Integrating machine learning with transcriptome-wide association studies to identify novel predictive biomarkers for venous thromboembolism.

IF 3.8 2区 医学 Q1 HEMATOLOGY
Leihua Fu, Jieni Yu, Zhe Chen, Chao Xu, Feidan Gao, Zhijian Zhang, Jiaping Fu, Pan Hong, Weiying Feng
{"title":"Integrating machine learning with transcriptome-wide association studies to identify novel predictive biomarkers for venous thromboembolism.","authors":"Leihua Fu, Jieni Yu, Zhe Chen, Chao Xu, Feidan Gao, Zhijian Zhang, Jiaping Fu, Pan Hong, Weiying Feng","doi":"10.1111/bjh.70160","DOIUrl":null,"url":null,"abstract":"<p><p>Venous thromboembolism (VTE) is a multifactorial disorder in which genetic factors play a critical role. Existing tools like polygenic risk scores rely on single nucleotide polymorphisms (SNPs) with limited biological interpretability, potentially reducing predictive accuracy. To address this limitation, we propose an integrative approach that combines transcriptome-wide association study (TWAS), patient-derived transcriptomic data and machine learning. A total of 577 candidate genes were identified through a TWAS leveraging large-scale genome-wide association study summary statistics. These genes were refined using transcriptomic data from VTE patients and prioritized through the least absolute shrinkage and selection operator (LASSO) and Boruta algorithms, resulting in four predictive genes: KLKB1, ATG16L1, SELL and GLRX2. Predictive models based on these genes, constructed with XGBoost, random forest and logistic regression, demonstrated consistently high performance in both training (area under the receiver operating characteristic curve [AUC] range: 0.913-0.970) and validation cohorts (AUC range: 0.916-0.968). Shapley additive explanations (SHAP) and regression coefficients further supported the contribution of these genes to model predictions. This approach may facilitate the identification of biologically interpretable predictors and contribute to improved VTE risk prediction.</p>","PeriodicalId":135,"journal":{"name":"British Journal of Haematology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bjh.70160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Venous thromboembolism (VTE) is a multifactorial disorder in which genetic factors play a critical role. Existing tools like polygenic risk scores rely on single nucleotide polymorphisms (SNPs) with limited biological interpretability, potentially reducing predictive accuracy. To address this limitation, we propose an integrative approach that combines transcriptome-wide association study (TWAS), patient-derived transcriptomic data and machine learning. A total of 577 candidate genes were identified through a TWAS leveraging large-scale genome-wide association study summary statistics. These genes were refined using transcriptomic data from VTE patients and prioritized through the least absolute shrinkage and selection operator (LASSO) and Boruta algorithms, resulting in four predictive genes: KLKB1, ATG16L1, SELL and GLRX2. Predictive models based on these genes, constructed with XGBoost, random forest and logistic regression, demonstrated consistently high performance in both training (area under the receiver operating characteristic curve [AUC] range: 0.913-0.970) and validation cohorts (AUC range: 0.916-0.968). Shapley additive explanations (SHAP) and regression coefficients further supported the contribution of these genes to model predictions. This approach may facilitate the identification of biologically interpretable predictors and contribute to improved VTE risk prediction.

整合机器学习与全转录组关联研究,以确定静脉血栓栓塞的新型预测性生物标志物。
静脉血栓栓塞(VTE)是一种多因素疾病,遗传因素在其中起关键作用。现有的工具,如多基因风险评分,依赖于单核苷酸多态性(snp),生物可解释性有限,可能会降低预测的准确性。为了解决这一限制,我们提出了一种结合全转录组关联研究(TWAS)、患者衍生转录组数据和机器学习的综合方法。通过TWAS利用大规模全基因组关联研究汇总统计,共鉴定出577个候选基因。这些基因使用来自VTE患者的转录组数据进行细化,并通过最小绝对收缩和选择算子(LASSO)和Boruta算法进行优先排序,得到四个预测基因:KLKB1, ATG16L1, SELL和GLRX2。使用XGBoost、随机森林和逻辑回归构建的基于这些基因的预测模型,在训练组(受试者工作特征曲线下面积[AUC]范围:0.913-0.970)和验证组(AUC范围:0.916-0.968)中均表现出一致的高性能。Shapley加性解释(SHAP)和回归系数进一步支持了这些基因对模型预测的贡献。这种方法可能有助于识别生物学上可解释的预测因子,并有助于改进静脉血栓栓塞风险预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
4.60%
发文量
565
审稿时长
1 months
期刊介绍: The British Journal of Haematology publishes original research papers in clinical, laboratory and experimental haematology. The Journal also features annotations, reviews, short reports, images in haematology and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信