Deconvolution Methods to Link Multi-Omics Data to Cell Type-Specific Extracellular Vesicle Abundances.

IF 3.9 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-09-15 DOI:10.1002/pmic.70043
Iben Skov Jensen, Jannik Hjortshøj Larsen, Per Svenningsen
{"title":"Deconvolution Methods to Link Multi-Omics Data to Cell Type-Specific Extracellular Vesicle Abundances.","authors":"Iben Skov Jensen, Jannik Hjortshøj Larsen, Per Svenningsen","doi":"10.1002/pmic.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) provide non-invasive information on cellular health and disease. Yet, with the small size of EVs and more than 200 cell types contributing EVs to the extracellular fluids, it is challenging to determine whether changes in EV-associated lipids, RNAs, and proteins occur because of differences in expression or cell type-specific EV abundances. This limits our use of EV-based biomarkers and our understanding of how EVs contribute to health and diseases. In recent decades, next-generation RNA sequencing methods have fueled the development of transcriptome deconvolution methods to determine cell type proportions in tissue RNA samples. These methods can also estimate cell type-specific EV abundances using the EV's RNA \"fingerprint\"; however, differences between cell and EV RNA composition can significantly bias the estimates. Based on a recent benchmarking study of transcriptome deconvolution methods, we will review technical and biological factors that drive the most accurate deconvolution, focusing on mRNA sequencing data from EVs. Moreover, we will describe biological factors that can affect the interpretation of the deconvolution methods of cell type-specific EV abundance estimates in acute and chronic conditions and give a perspective on how deconvolution can be used to monitor physiological and disease processes in the human body.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e70043"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.70043","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) provide non-invasive information on cellular health and disease. Yet, with the small size of EVs and more than 200 cell types contributing EVs to the extracellular fluids, it is challenging to determine whether changes in EV-associated lipids, RNAs, and proteins occur because of differences in expression or cell type-specific EV abundances. This limits our use of EV-based biomarkers and our understanding of how EVs contribute to health and diseases. In recent decades, next-generation RNA sequencing methods have fueled the development of transcriptome deconvolution methods to determine cell type proportions in tissue RNA samples. These methods can also estimate cell type-specific EV abundances using the EV's RNA "fingerprint"; however, differences between cell and EV RNA composition can significantly bias the estimates. Based on a recent benchmarking study of transcriptome deconvolution methods, we will review technical and biological factors that drive the most accurate deconvolution, focusing on mRNA sequencing data from EVs. Moreover, we will describe biological factors that can affect the interpretation of the deconvolution methods of cell type-specific EV abundance estimates in acute and chronic conditions and give a perspective on how deconvolution can be used to monitor physiological and disease processes in the human body.

将多组学数据与细胞类型特异性细胞外囊泡丰度联系起来的反卷积方法。
细胞外囊泡(EVs)提供细胞健康和疾病的非侵入性信息。然而,由于EV的体积较小,并且有超过200种细胞类型为细胞外液提供EV,因此确定EV相关脂质、rna和蛋白质的变化是否由于表达或细胞类型特异性EV丰度的差异而发生是具有挑战性的。这限制了我们使用基于电动汽车的生物标志物,以及我们对电动汽车如何促进健康和疾病的理解。近几十年来,下一代RNA测序方法推动了转录组反褶积方法的发展,以确定组织RNA样品中的细胞类型比例。这些方法还可以利用EV的RNA“指纹”来估计细胞类型特异性EV的丰度;然而,细胞和EV RNA组成的差异会显著影响估计结果。基于最近对转录组反褶积方法的基准研究,我们将回顾驱动最准确反褶积的技术和生物因素,重点关注来自电动汽车的mRNA测序数据。此外,我们将描述可能影响解释急性和慢性疾病中细胞类型特异性EV丰度估计的反卷积方法的生物因素,并给出如何使用反卷积来监测人体生理和疾病过程的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信