Novel and reliable soliton solutions for nematicon liquid crystal models with various nonlinearities by the application of analytical method

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
A. Mumtaz, M. Shakeel, A. Manan, Nehad Ali Shah
{"title":"Novel and reliable soliton solutions for nematicon liquid crystal models with various nonlinearities by the application of analytical method","authors":"A. Mumtaz,&nbsp;M. Shakeel,&nbsp;A. Manan,&nbsp;Nehad Ali Shah","doi":"10.1007/s12648-025-03603-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the Kerr and Parabolic Law features of the equation characterizing nematic liquid crystals are taken into account in order to create trigonometric, hyperbolic and rational type travelling wave solutions utilizing the (<i>G</i>′/<i>G</i><sup>2</sup>)-expansion method. The travelling wave solutions that are obtained from the equation play a crucial role in the energy transfer within the liquid crystal soliton molecules. Additionally, the solitary wave behaviors seen in the generated travelling wave solutions for various constant values are examined. Kink type soliton, singular kink soliton, singular soliton, periodic soliton, singular periodic soliton, double soliton, dark-bright W-type soliton and compacton are obtained as the travelling wave solutions of the equation defining nematic liquid crystals incorporating Kerr and Parabolic Law property.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 11","pages":"4291 - 4309"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-025-03603-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the Kerr and Parabolic Law features of the equation characterizing nematic liquid crystals are taken into account in order to create trigonometric, hyperbolic and rational type travelling wave solutions utilizing the (G′/G2)-expansion method. The travelling wave solutions that are obtained from the equation play a crucial role in the energy transfer within the liquid crystal soliton molecules. Additionally, the solitary wave behaviors seen in the generated travelling wave solutions for various constant values are examined. Kink type soliton, singular kink soliton, singular soliton, periodic soliton, singular periodic soliton, double soliton, dark-bright W-type soliton and compacton are obtained as the travelling wave solutions of the equation defining nematic liquid crystals incorporating Kerr and Parabolic Law property.

应用解析方法,为具有各种非线性的列向液晶模型提供了新颖可靠的孤子解
在这项工作中,为了利用(G ' /G2)展开方法创建三角、双曲和有理型行波解,考虑了向列型液晶方程的克尔定律和抛物定律特征。由方程得到的行波解在液晶孤子分子内的能量传递中起着至关重要的作用。此外,还研究了不同常数值下生成的行波解的孤立波行为。结合克尔定律和抛物定律性质,得到了向列型液晶方程的行波解:扭结型孤子、奇异扭结孤子、奇异孤子、周期孤子、奇异周期孤子、双孤子、暗亮w型孤子和紧子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信