{"title":"A Test Statistic for Block-Diagonal Covariance Matrix Structure in polSAR Data","authors":"Allan A. Nielsen;Henning Skriver;Knut Conradsen","doi":"10.1109/LGRS.2025.3605978","DOIUrl":null,"url":null,"abstract":"We report on a complex Wishart distribution-based test statistic <inline-formula> <tex-math>$\\boldsymbol {Q}$ </tex-math></inline-formula> for block-diagonality in Hermitian matrices such as the ones analyzed in polarimetric synthetic aperture radar (polSAR) image data in the covariance matrix formulation. We also give an improved probability measure <inline-formula> <tex-math>$\\boldsymbol {P}$ </tex-math></inline-formula> associated with the test statistic. This is used in a case with simulated data to demonstrate the superiority of the new expression for <inline-formula> <tex-math>$\\boldsymbol {P}$ </tex-math></inline-formula> and to illustrate the dependence of results on the choice of covariance matrix, its dimensionality, the equivalent number of looks, and two parameters in the improved <inline-formula> <tex-math>$\\boldsymbol {P}$ </tex-math></inline-formula> measure. We also give two cases with acquired data. One case is with airborne F-SAR polarimetric data, where we test for reflection symmetry, another case is with (spaceborne) dual-pol Sentinel-1 data, where we test if the data are diagonal-only. The absence of block-diagonal structure occurs mostly for man-made objects. In the example with Sentinel-1 data, some objects (e.g., buildings, cars, aircraft, and ships) are detected, others (e.g., some bridges) are not.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11151622/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report on a complex Wishart distribution-based test statistic $\boldsymbol {Q}$ for block-diagonality in Hermitian matrices such as the ones analyzed in polarimetric synthetic aperture radar (polSAR) image data in the covariance matrix formulation. We also give an improved probability measure $\boldsymbol {P}$ associated with the test statistic. This is used in a case with simulated data to demonstrate the superiority of the new expression for $\boldsymbol {P}$ and to illustrate the dependence of results on the choice of covariance matrix, its dimensionality, the equivalent number of looks, and two parameters in the improved $\boldsymbol {P}$ measure. We also give two cases with acquired data. One case is with airborne F-SAR polarimetric data, where we test for reflection symmetry, another case is with (spaceborne) dual-pol Sentinel-1 data, where we test if the data are diagonal-only. The absence of block-diagonal structure occurs mostly for man-made objects. In the example with Sentinel-1 data, some objects (e.g., buildings, cars, aircraft, and ships) are detected, others (e.g., some bridges) are not.