Implementation of machine learning technologies in construction maintenance: A strategic analysis

IF 4.9
Assane Lo , Aysha Alshehhi
{"title":"Implementation of machine learning technologies in construction maintenance: A strategic analysis","authors":"Assane Lo ,&nbsp;Aysha Alshehhi","doi":"10.1016/j.mlwa.2025.100731","DOIUrl":null,"url":null,"abstract":"<div><div>Current predictive maintenance systems in construction rely on static machine learning approaches that fail to adapt to evolving operational environments, achieving only 3%–7% performance improvements over individual models and suffering 15%–25% performance degradation when transferred across domains. This research develops and validates an Adaptive Ensemble Framework that dynamically optimizes algorithm selection through real-time data assessment and performance feedback.</div><div>The framework’s meta-learning architecture continuously adapts ensemble weights using data complexity measures, temporal pattern analysis, and uncertainty quantification metrics. Unlike static approaches, the system integrates scikit-learn and TensorFlow models through dynamic optimization algorithms that respond to changing conditions without manual reconfiguration. The framework provides uncertainty-aware predictions with confidence intervals essential for safety-critical construction decisions.</div><div>Comprehensive evaluation across four industries using 50,000+ maintenance records from major construction firms demonstrates substantial improvements. The adaptive ensemble achieves F1-score of 0.934 in construction delay prediction, representing 15.3% improvement over individual models and 8.7% enhancement over static ensembles. Cross-industry validation reveals successful knowledge transfer with minimal performance degradation (<span><math><mo>&lt;</mo></math></span>5%).</div><div>This research contributes three scholarly advances: (i) the first real-time adaptive ensemble framework eliminating manual hyperparameter tuning, (ii) uncertainty quantification mechanisms for safety-critical applications, and (iii) robust cross-industry transferability through systematic domain adaptation. The framework extends beyond construction to manufacturing, energy, and transportation sectors, demonstrating computational efficiency with sub-100ms latency and linear scaling characteristics. These contributions establish new benchmarks for adaptive machine learning in industrial predictive maintenance.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"22 ","pages":"Article 100731"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025001148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current predictive maintenance systems in construction rely on static machine learning approaches that fail to adapt to evolving operational environments, achieving only 3%–7% performance improvements over individual models and suffering 15%–25% performance degradation when transferred across domains. This research develops and validates an Adaptive Ensemble Framework that dynamically optimizes algorithm selection through real-time data assessment and performance feedback.
The framework’s meta-learning architecture continuously adapts ensemble weights using data complexity measures, temporal pattern analysis, and uncertainty quantification metrics. Unlike static approaches, the system integrates scikit-learn and TensorFlow models through dynamic optimization algorithms that respond to changing conditions without manual reconfiguration. The framework provides uncertainty-aware predictions with confidence intervals essential for safety-critical construction decisions.
Comprehensive evaluation across four industries using 50,000+ maintenance records from major construction firms demonstrates substantial improvements. The adaptive ensemble achieves F1-score of 0.934 in construction delay prediction, representing 15.3% improvement over individual models and 8.7% enhancement over static ensembles. Cross-industry validation reveals successful knowledge transfer with minimal performance degradation (<5%).
This research contributes three scholarly advances: (i) the first real-time adaptive ensemble framework eliminating manual hyperparameter tuning, (ii) uncertainty quantification mechanisms for safety-critical applications, and (iii) robust cross-industry transferability through systematic domain adaptation. The framework extends beyond construction to manufacturing, energy, and transportation sectors, demonstrating computational efficiency with sub-100ms latency and linear scaling characteristics. These contributions establish new benchmarks for adaptive machine learning in industrial predictive maintenance.
机器学习技术在建筑维护中的应用:战略分析
目前构建中的预测性维护系统依赖于静态机器学习方法,无法适应不断变化的操作环境,相对于单个模型,只能实现3%-7%的性能提升,跨域转移时性能下降15%-25%。本研究开发并验证了一个自适应集成框架,该框架通过实时数据评估和性能反馈动态优化算法选择。该框架的元学习架构使用数据复杂性度量、时间模式分析和不确定性量化度量不断地调整集成权重。与静态方法不同,该系统通过动态优化算法集成scikit-learn和TensorFlow模型,无需手动重新配置即可响应不断变化的条件。该框架提供了具有不确定性的预测,其置信区间对于安全关键的施工决策至关重要。使用来自主要建筑公司的50,000多个维护记录对四个行业进行综合评估,显示出实质性的改进。自适应集成在施工延误预测中的得分为f1 - 0.934,比单个模型提高15.3%,比静态集成提高8.7%。跨行业验证揭示了成功的知识转移与最小的性能下降(<5%)。这项研究贡献了三个学术进展:(i)第一个实时自适应集成框架,消除了手动超参数调整;(ii)安全关键应用的不确定性量化机制;(iii)通过系统领域适应实现强大的跨行业可转移性。该框架从建筑扩展到制造、能源和运输部门,展示了低于100ms的延迟和线性缩放特性的计算效率。这些贡献为工业预测性维护中的自适应机器学习建立了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信