{"title":"A unified selection consistency theorem for information criterion-based rank estimators in factor analysis","authors":"Toshinari Morimoto , Hung Hung , Su-Yun Huang","doi":"10.1016/j.jmva.2025.105498","DOIUrl":null,"url":null,"abstract":"<div><div>Over the years, numerous rank estimators for factor models have been proposed in the literature. This article focuses on information criterion-based rank estimators and investigates their consistency in rank selection. The gap conditions serve as necessary and sufficient conditions for rank estimators to achieve selection consistency under the general assumptions of random matrix theory. We establish a unified theorem on selection consistency, presenting the gap conditions for information criterion-based rank estimators with a unified formulation.</div><div>To validate the theorem’s assertion that rank selection consistency is solely determined by the gap conditions, we conduct extensive numerical simulations across various settings. Additionally, we undertake supplementary simulations to explore the strengths and limitations of information criterion-based estimators by comparing them with other types of rank estimators.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105498"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000934","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the years, numerous rank estimators for factor models have been proposed in the literature. This article focuses on information criterion-based rank estimators and investigates their consistency in rank selection. The gap conditions serve as necessary and sufficient conditions for rank estimators to achieve selection consistency under the general assumptions of random matrix theory. We establish a unified theorem on selection consistency, presenting the gap conditions for information criterion-based rank estimators with a unified formulation.
To validate the theorem’s assertion that rank selection consistency is solely determined by the gap conditions, we conduct extensive numerical simulations across various settings. Additionally, we undertake supplementary simulations to explore the strengths and limitations of information criterion-based estimators by comparing them with other types of rank estimators.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.