InferEdit: An instruction-based system with a multimodal LLM for complex multi-target image editing

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhiyong Huang, Yali She, MengLi Xiang, TuoJun Ding
{"title":"InferEdit: An instruction-based system with a multimodal LLM for complex multi-target image editing","authors":"Zhiyong Huang,&nbsp;Yali She,&nbsp;MengLi Xiang,&nbsp;TuoJun Ding","doi":"10.1016/j.visinf.2025.100265","DOIUrl":null,"url":null,"abstract":"<div><div>To address the limitations of existing instruction-based image editing methods in handling complex Multi-target instructions and maintaining semantic consistency, we present InferEdit, a training-free image editing system driven by a Multimodal Large Language Model (MLLM). The system parses complex multi-target instructions into sequential subtasks and performs editing iteratively through target localization and semantic reasoning. Furthermore, to adaptively select the most suitable editing models, we construct the evaluation dataset InferDataset to evaluate various editing models on three types of tasks: object removal, object replacement, and local editing. Based on a comprehensive scoring mechanism, we build Binary Search Trees (BSTs) for different editing types to facilitate model scheduling. Experiments demonstrate that InferEdit outperforms existing methods in handling complex instructions while maintaining semantic consistency and visual quality.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"9 3","pages":"Article 100265"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X25000488","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the limitations of existing instruction-based image editing methods in handling complex Multi-target instructions and maintaining semantic consistency, we present InferEdit, a training-free image editing system driven by a Multimodal Large Language Model (MLLM). The system parses complex multi-target instructions into sequential subtasks and performs editing iteratively through target localization and semantic reasoning. Furthermore, to adaptively select the most suitable editing models, we construct the evaluation dataset InferDataset to evaluate various editing models on three types of tasks: object removal, object replacement, and local editing. Based on a comprehensive scoring mechanism, we build Binary Search Trees (BSTs) for different editing types to facilitate model scheduling. Experiments demonstrate that InferEdit outperforms existing methods in handling complex instructions while maintaining semantic consistency and visual quality.
一个基于指令的系统,具有多模态LLM,用于复杂的多目标图像编辑
为了解决现有基于指令的图像编辑方法在处理复杂的多目标指令和保持语义一致性方面的局限性,我们提出了一个由多模态大语言模型(Multimodal Large Language Model, MLLM)驱动的无需训练的图像编辑系统。该系统通过目标定位和语义推理,将复杂的多目标指令解析成顺序的子任务,并进行迭代编辑。此外,为了自适应地选择最合适的编辑模型,我们构建了评估数据集InferDataset,对对象移除、对象替换和局部编辑三种类型的编辑模型进行评估。基于综合评分机制,我们针对不同的编辑类型构建了二叉搜索树(BSTs),以方便模型调度。实验表明,在保持语义一致性和视觉质量的同时,InferEdit在处理复杂指令方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信