PVeSight: Dimensionality reduction-based anomaly detection and visual analysis of photovoltaic strings

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yurun Yang , Xinjing Yi , Yingqiang Jin , Sen Li , Kang Ma , Shuhan Liu , Dazhen Deng , Di Weng , Yingcai Wu
{"title":"PVeSight: Dimensionality reduction-based anomaly detection and visual analysis of photovoltaic strings","authors":"Yurun Yang ,&nbsp;Xinjing Yi ,&nbsp;Yingqiang Jin ,&nbsp;Sen Li ,&nbsp;Kang Ma ,&nbsp;Shuhan Liu ,&nbsp;Dazhen Deng ,&nbsp;Di Weng ,&nbsp;Yingcai Wu","doi":"10.1016/j.visinf.2025.100243","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and accurate detection of anomalies in photovoltaic (PV) strings is essential for ensuring the normal operation of PV power stations. Most existing studies focus on developing automated anomaly detection models based on temporal abnormalities in PV strings. However, since analyzing anomalies often requires domain knowledge, existing automated methods have significant limitations in assisting experts to understand the causes and impact of these anomalies. In close collaboration with domain experts, this work has summarized the specific user requirements for PV string anomaly detection and designed PVeSight, an interactive visual analysis system to help experts discover and analyze anomalies in PV strings. We use dimensionality reduction techniques to generate string pattern map. These maps are used for anomaly detection, classifying anomalies, comparative analysis between strings, and hierarchical analysis under inverters and combiner boxes. This helps experts trace the causes of anomalies and acquire valuable insights into anomalous PV strings. Through case studies and expert evaluation, we verified the usability and effectiveness of PVeSight for PV string anomaly detection.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"9 3","pages":"Article 100243"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X25000269","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and accurate detection of anomalies in photovoltaic (PV) strings is essential for ensuring the normal operation of PV power stations. Most existing studies focus on developing automated anomaly detection models based on temporal abnormalities in PV strings. However, since analyzing anomalies often requires domain knowledge, existing automated methods have significant limitations in assisting experts to understand the causes and impact of these anomalies. In close collaboration with domain experts, this work has summarized the specific user requirements for PV string anomaly detection and designed PVeSight, an interactive visual analysis system to help experts discover and analyze anomalies in PV strings. We use dimensionality reduction techniques to generate string pattern map. These maps are used for anomaly detection, classifying anomalies, comparative analysis between strings, and hierarchical analysis under inverters and combiner boxes. This helps experts trace the causes of anomalies and acquire valuable insights into anomalous PV strings. Through case studies and expert evaluation, we verified the usability and effectiveness of PVeSight for PV string anomaly detection.
基于降维的光伏串异常检测与可视化分析
高效、准确地检测光伏发电串的异常,对于保证光伏电站的正常运行至关重要。现有的研究大多集中在开发基于PV串时间异常的自动异常检测模型上。然而,由于分析异常通常需要领域知识,现有的自动化方法在帮助专家了解这些异常的原因和影响方面有很大的局限性。在与领域专家的密切合作下,本工作总结了PV串异常检测的具体用户需求,并设计了PVeSight,这是一个交互式可视化分析系统,可以帮助专家发现和分析PV串的异常。我们使用降维技术来生成字符串模式图。这些映射用于异常检测、异常分类、字符串之间的比较分析以及逆变器和组合盒下的分层分析。这有助于专家追踪异常原因,并获得异常PV管柱的宝贵信息。通过案例研究和专家评估,验证了PVeSight在PV管柱异常检测中的可用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信