A synergistic multi-stage RAG architecture for boosting context relevance in data science literature

Ahmet Yasin Aytar, Kamer Kaya, Kemal Kılıç
{"title":"A synergistic multi-stage RAG architecture for boosting context relevance in data science literature","authors":"Ahmet Yasin Aytar,&nbsp;Kamer Kaya,&nbsp;Kemal Kılıç","doi":"10.1016/j.nlp.2025.100179","DOIUrl":null,"url":null,"abstract":"<div><div>Navigating the voluminous and rapidly evolving data science literature presents a significant bottleneck for researchers and practitioners. Standard Retrieval-Augmented Generation (RAG) systems often struggle with retrieving precisely relevant context from this dense academic corpus. This paper introduces a synergistic multi-stage RAG architecture specifically tailored to overcome these challenges. Our approach integrates structured document parsing (GROBID), domain-specific embedding fine-tuning derived from textbooks, semantic chunking for coherence, and proposes a novel ’Abstract First’ retrieval strategy that prioritizes concise, high-signal summaries. Through rigorous evaluation using the RAGAS framework and a custom data science query set, we demonstrate that this integrated architecture significantly boosts Context Relevance by over 15-fold compared to baseline RAG, surpassing configurations using only subsets of these enhancements. These findings underscore the critical importance of multi-stage optimization and highlight the surprising efficacy of the abstract-centric retrieval method for specialized academic domains, offering a validated pathway to more effective literature navigation in data science.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"13 ","pages":"Article 100179"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971912500055X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Navigating the voluminous and rapidly evolving data science literature presents a significant bottleneck for researchers and practitioners. Standard Retrieval-Augmented Generation (RAG) systems often struggle with retrieving precisely relevant context from this dense academic corpus. This paper introduces a synergistic multi-stage RAG architecture specifically tailored to overcome these challenges. Our approach integrates structured document parsing (GROBID), domain-specific embedding fine-tuning derived from textbooks, semantic chunking for coherence, and proposes a novel ’Abstract First’ retrieval strategy that prioritizes concise, high-signal summaries. Through rigorous evaluation using the RAGAS framework and a custom data science query set, we demonstrate that this integrated architecture significantly boosts Context Relevance by over 15-fold compared to baseline RAG, surpassing configurations using only subsets of these enhancements. These findings underscore the critical importance of multi-stage optimization and highlight the surprising efficacy of the abstract-centric retrieval method for specialized academic domains, offering a validated pathway to more effective literature navigation in data science.
一个协同的多阶段RAG架构,用于提高数据科学文献中的上下文相关性
浏览大量快速发展的数据科学文献对研究人员和实践者来说是一个重大的瓶颈。标准检索-增强生成(RAG)系统常常难以从这种密集的学术语料库中检索精确相关的上下文。本文介绍了一种专门为克服这些挑战而量身定制的协同多阶段RAG架构。我们的方法集成了结构化文档解析(GROBID)、源自教科书的特定领域嵌入微调、语义分块的一致性,并提出了一种新颖的“摘要优先”检索策略,优先考虑简洁、高信号的摘要。通过使用RAGAS框架和自定义数据科学查询集进行严格的评估,我们证明,与基线RAG相比,这种集成架构显著地将上下文相关性提高了15倍以上,超过了仅使用这些增强的子集的配置。这些发现强调了多阶段优化的重要性,并突出了以摘要为中心的检索方法在专业学术领域的惊人功效,为数据科学中更有效的文献导航提供了一条经过验证的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信