{"title":"Dynamical regimes of small bodies perturbed by an eccentric giant planet","authors":"Tabaré Gallardo, Rodrigo Cabral","doi":"10.1016/j.pss.2025.106198","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamics of small bodies perturbed by an eccentric planet was done mostly under the assumption of well separated orbits using analytical approximations appropriate for the hierarchical case. In this work we study the dynamics of small bodies in a wide range of eccentricities and inclinations perturbed by a giant planet with <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span>, in the non-hierarchical case. We consider small bodies both interior and exterior to the planet. We apply semi-analytical models for the study of resonances and the properties of the secular disturbing function. We perform a frequency analysis of numerical integration of the exact equations of motion to obtain the proper frequencies and corresponding dynamical secular paths. We study the dependence of proper frequencies with the initial mutual inclination and we find a critical inclination around 30 degrees for which the pericenter proper frequency vanishes giving rise to the increase of small bodies eccentricities followed by unstable dynamics. This happens for both interior and exterior small bodies and constitutes a stability barrier in the inclination. For greater inclinations the ZLK mechanism dominates both populations. By means of numerical integration of thousands of small bodies we reproduce the well known pericenter shepherding, but for the exterior populations with low inclinations we also find concentrations of the longitude of the ascending node in the direction of the planetary line of apsides.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"268 ","pages":"Article 106198"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063325001655","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of small bodies perturbed by an eccentric planet was done mostly under the assumption of well separated orbits using analytical approximations appropriate for the hierarchical case. In this work we study the dynamics of small bodies in a wide range of eccentricities and inclinations perturbed by a giant planet with , in the non-hierarchical case. We consider small bodies both interior and exterior to the planet. We apply semi-analytical models for the study of resonances and the properties of the secular disturbing function. We perform a frequency analysis of numerical integration of the exact equations of motion to obtain the proper frequencies and corresponding dynamical secular paths. We study the dependence of proper frequencies with the initial mutual inclination and we find a critical inclination around 30 degrees for which the pericenter proper frequency vanishes giving rise to the increase of small bodies eccentricities followed by unstable dynamics. This happens for both interior and exterior small bodies and constitutes a stability barrier in the inclination. For greater inclinations the ZLK mechanism dominates both populations. By means of numerical integration of thousands of small bodies we reproduce the well known pericenter shepherding, but for the exterior populations with low inclinations we also find concentrations of the longitude of the ascending node in the direction of the planetary line of apsides.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research