Weighted Lorentz estimates with a variable power for non-uniformly elliptic two-sided obstacle problems

IF 1.3 Q2 MATHEMATICS, APPLIED
Junjie Zhang, Lina Niu
{"title":"Weighted Lorentz estimates with a variable power for non-uniformly elliptic two-sided obstacle problems","authors":"Junjie Zhang,&nbsp;Lina Niu","doi":"10.1016/j.rinam.2025.100638","DOIUrl":null,"url":null,"abstract":"<div><div>We proved an optimal local Calderón–Zygmund type estimate with a variable power in weighted Lorentz spaces for the weak solution of non-uniformly elliptic two-sided obstacle problems. It is mainly assumed that the nonlinearity satisfies the <span><math><mrow><mo>(</mo><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>-growth condition and <span><math><mrow><mo>(</mo><mi>δ</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span>-BMO condition, while the exponents <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are strong <span><math><mo>log</mo></math></span>-Hölder continuous functions. The approach of this paper is mainly based on the perturbation technique and maximal function free technique.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100638"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425001025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We proved an optimal local Calderón–Zygmund type estimate with a variable power in weighted Lorentz spaces for the weak solution of non-uniformly elliptic two-sided obstacle problems. It is mainly assumed that the nonlinearity satisfies the (p(x),q(x))-growth condition and (δ,R)-BMO condition, while the exponents p(x),q(x) are strong log-Hölder continuous functions. The approach of this paper is mainly based on the perturbation technique and maximal function free technique.
非均匀椭圆型双边障碍问题的变幂加权Lorentz估计
在加权洛伦兹空间中,证明了非均匀椭圆型双边障碍问题弱解的最优局部变幂Calderón-Zygmund型估计。主要假设非线性满足(p(x),q(x))-生长条件和(δ,R)-BMO条件,而指数p(x),q(x)是强log-Hölder连续函数。本文的方法主要基于微扰技术和无极大函数技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信