Computational investigation of the structural, electronic and optical properties of co-doped and tri (C, N, Ni) - doped TiO2 for photoelectrochemical applications

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Ihtesham Ullah , Sultan Alomairy , Thamer Alomayri , Ahmad M. Hakamy , Matiullah Khan
{"title":"Computational investigation of the structural, electronic and optical properties of co-doped and tri (C, N, Ni) - doped TiO2 for photoelectrochemical applications","authors":"Ihtesham Ullah ,&nbsp;Sultan Alomairy ,&nbsp;Thamer Alomayri ,&nbsp;Ahmad M. Hakamy ,&nbsp;Matiullah Khan","doi":"10.1016/j.cocom.2025.e01136","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium dioxide (TiO<sub>2</sub>) is efficient in environmental remediation and renewable energy due to its chemical and optical stability. However, its wide bandgap (3.2 eV) is not suitable for absorbing major part of the solar spectrum. Doping with suitable elements can reduce the bandgap and enhance the n-type conductivity. This study explores the impact of substitutional point defect on the TiO<sub>2</sub> photoelectrochemical properties using density functional theory. Different co-doped and tri-doped models significantly reduced the intrinsic band gap of TiO<sub>2</sub>. The calculated band gaps are: N, Ni co-doped TiO<sub>2</sub> = 1.81 eV; C, Ni co-doped TiO<sub>2</sub> = 1.42 eV; C, N co-doped TiO<sub>2</sub> = 1.16 eV; and (C, N, Ni) tri-doped TiO<sub>2</sub> = 1.25 eV. The tri-doped system showed the highest conductivity, greater light absorption, and a strong dielectric response, confirming its enhanced interaction with the visible light. The density of states analysis revealed that dopant states successfully changed the band structure making it favorable conditions for photoelectrochemical applications.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01136"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium dioxide (TiO2) is efficient in environmental remediation and renewable energy due to its chemical and optical stability. However, its wide bandgap (3.2 eV) is not suitable for absorbing major part of the solar spectrum. Doping with suitable elements can reduce the bandgap and enhance the n-type conductivity. This study explores the impact of substitutional point defect on the TiO2 photoelectrochemical properties using density functional theory. Different co-doped and tri-doped models significantly reduced the intrinsic band gap of TiO2. The calculated band gaps are: N, Ni co-doped TiO2 = 1.81 eV; C, Ni co-doped TiO2 = 1.42 eV; C, N co-doped TiO2 = 1.16 eV; and (C, N, Ni) tri-doped TiO2 = 1.25 eV. The tri-doped system showed the highest conductivity, greater light absorption, and a strong dielectric response, confirming its enhanced interaction with the visible light. The density of states analysis revealed that dopant states successfully changed the band structure making it favorable conditions for photoelectrochemical applications.
共掺杂和三(C, N, Ni)掺杂TiO2在光电化学应用中的结构、电子和光学性质的计算研究
二氧化钛(TiO2)具有良好的化学稳定性和光学稳定性,是一种高效的环境修复和可再生能源。然而,它的宽带隙(3.2 eV)不适合吸收太阳光谱的大部分。掺杂合适的元素可以减小带隙,提高n型电导率。本研究利用密度泛函理论探讨了取代点缺陷对TiO2光电化学性能的影响。不同共掺杂和三掺杂模式显著降低了TiO2的本征带隙。计算得到的带隙为:N、Ni共掺杂TiO2 = 1.81 eV;C、Ni共掺杂TiO2 = 1.42 eV;C, N共掺杂TiO2 = 1.16 eV;(C, N, Ni)三掺杂TiO2 = 1.25 eV。三掺杂体系表现出最高的电导率,更大的光吸收和强的介电响应,证实了它与可见光的相互作用增强。态密度分析表明,掺杂态成功地改变了能带结构,为光电化学应用创造了有利条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信