A faster algorithm for independent cut

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Vsevolod Chernyshev , Johannes Rauch , Dieter Rautenbach , Liliia Redina
{"title":"A faster algorithm for independent cut","authors":"Vsevolod Chernyshev ,&nbsp;Johannes Rauch ,&nbsp;Dieter Rautenbach ,&nbsp;Liliia Redina","doi":"10.1016/j.tcs.2025.115542","DOIUrl":null,"url":null,"abstract":"<div><div>The previously fastest algorithm for deciding the existence of an independent cut had a runtime of <span><math><mrow><msup><mi>O</mi><mo>*</mo></msup><mrow><mo>(</mo><mn>1</mn><mo>.</mo><msup><mn>4423</mn><mi>n</mi></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>n</mi></math></span> is the order of the input graph. We improve this to <span><math><mrow><msup><mi>O</mi><mo>*</mo></msup><mrow><mo>(</mo><mn>1</mn><mo>.</mo><msup><mn>4143</mn><mi>n</mi></msup><mo>)</mo></mrow></mrow></math></span>. In fact, we prove a runtime of <span><math><mrow><msup><mi>O</mi><mo>*</mo></msup><mrow><mo>(</mo><msup><mn>2</mn><mrow><mo>(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>−</mo><msub><mi>α</mi><mstyle><mi>Δ</mi></mstyle></msub><mo>)</mo><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> on graphs of order <span><math><mi>n</mi></math></span> and maximum degree at most <span><math><mstyle><mi>Δ</mi></mstyle></math></span>, where <span><math><mrow><msub><mi>α</mi><mstyle><mi>Δ</mi></mstyle></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mo>+</mo><mn>4</mn><mo>⌊</mo><mfrac><mstyle><mi>Δ</mi></mstyle><mn>2</mn></mfrac><mo>⌋</mo></mrow></mfrac></mrow></math></span>. Furthermore, we show that the problem is fixed-parameter tractable on graphs of order <span><math><mi>n</mi></math></span> and minimum degree at least <span><math><mrow><mi>β</mi><mi>n</mi></mrow></math></span> for some <span><math><mrow><mi>β</mi><mo>&gt;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span>, where <span><math><mi>β</mi></math></span> is the parameter.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115542"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004803","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The previously fastest algorithm for deciding the existence of an independent cut had a runtime of O*(1.4423n), where n is the order of the input graph. We improve this to O*(1.4143n). In fact, we prove a runtime of O*(2(12αΔ)n) on graphs of order n and maximum degree at most Δ, where αΔ=12+4Δ2. Furthermore, we show that the problem is fixed-parameter tractable on graphs of order n and minimum degree at least βn for some β>12, where β is the parameter.
一种快速的独立切割算法
之前最快的判断独立割是否存在的算法运行时间为O*(1.4423n),其中n是输入图的阶数。我们将其改进为O*(1.4143n)。事实上,我们证明了一个运行时间为O*(2(12−αΔ)n)的n阶图,最大次数为Δ,其中αΔ=12+4⌊Δ2⌋。进一步地,我们证明了问题是固定参数可处理的,对于某些β>;12的n阶图和最小度至少为βn的图,其中β为参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信