Planet formation in chemically diverse and evolving discs

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
E. Pacetti, E. Schisano, D. Turrini, C. P. Dullemond, S. Molinari, C. Walsh, S. Fonte, U. Lebreuilly, R. S. Klessen, P. Hennebelle, S. L. Ivanovski, R. Politi, D. Polychroni, P. Simonetti, L. Testi
{"title":"Planet formation in chemically diverse and evolving discs","authors":"E. Pacetti, E. Schisano, D. Turrini, C. P. Dullemond, S. Molinari, C. Walsh, S. Fonte, U. Lebreuilly, R. S. Klessen, P. Hennebelle, S. L. Ivanovski, R. Politi, D. Polychroni, P. Simonetti, L. Testi","doi":"10.1051/0004-6361/202554012","DOIUrl":null,"url":null,"abstract":"Protoplanetary discs are dynamic environments where the interplay between chemical processes and mass transport shapes the composition of gas and dust available for planet formation. We investigate the combined effects of volatile chemistry (including both gas-phase and surface reactions), viscous gas evolution, and radial dust drift on the composition of planetary building blocks. We explore scenarios of chemical inheritance and reset under varying ionisation conditions and dust grain sizes in the submillimetre regime. We simulated the disc evolution using a semi-analytical 1D model that integrates chemical kinetics with gas and dust transport, accounting for viscous heating, turbulent mixing, and refractory organic carbon erosion. We find that mass transport plays a role in the chemical evolution of even sub-μm grains, especially in discs that have experienced strong heating or are exposed to relatively high levels of ionising radiation. The radial drift of relatively small (~100 μm) icy grains can yield significant volatile enrichment in the gas phase within the snowlines, increasing the abundances of species like H<sub>2<sub/>O, CO<sub>2<sub/>, and NH<sub>3<sub/> by up to an order of magnitude. Early planetesimal formation can lead to volatile depletion in the inner disc on timescales shorter than 0.5 Myr, while the erosion of refractory organic carbon can lead to markedly superstellar gas-phase C/O and C/N ratios. Notably, none of the analysed scenarios were able to reproduce the classical monotonic radial trend of the gas-phase C/O ratio predicted by early models. Our results also show that a pairwise comparison of elemental ratios, in the context of the host star’s composition, is key to isolating signatures of different scenarios in specific regions of the disc. We conclude that accurate models of planet formation must concurrently account for the chemical and dynamical evolution of discs, as well as the possible diversity of their initial chemical and physical conditions.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"16 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Protoplanetary discs are dynamic environments where the interplay between chemical processes and mass transport shapes the composition of gas and dust available for planet formation. We investigate the combined effects of volatile chemistry (including both gas-phase and surface reactions), viscous gas evolution, and radial dust drift on the composition of planetary building blocks. We explore scenarios of chemical inheritance and reset under varying ionisation conditions and dust grain sizes in the submillimetre regime. We simulated the disc evolution using a semi-analytical 1D model that integrates chemical kinetics with gas and dust transport, accounting for viscous heating, turbulent mixing, and refractory organic carbon erosion. We find that mass transport plays a role in the chemical evolution of even sub-μm grains, especially in discs that have experienced strong heating or are exposed to relatively high levels of ionising radiation. The radial drift of relatively small (~100 μm) icy grains can yield significant volatile enrichment in the gas phase within the snowlines, increasing the abundances of species like H2O, CO2, and NH3 by up to an order of magnitude. Early planetesimal formation can lead to volatile depletion in the inner disc on timescales shorter than 0.5 Myr, while the erosion of refractory organic carbon can lead to markedly superstellar gas-phase C/O and C/N ratios. Notably, none of the analysed scenarios were able to reproduce the classical monotonic radial trend of the gas-phase C/O ratio predicted by early models. Our results also show that a pairwise comparison of elemental ratios, in the context of the host star’s composition, is key to isolating signatures of different scenarios in specific regions of the disc. We conclude that accurate models of planet formation must concurrently account for the chemical and dynamical evolution of discs, as well as the possible diversity of their initial chemical and physical conditions.
行星在化学成分多样且不断演化的圆盘中形成
原行星盘是一种动态环境,其中化学过程和质量传输之间的相互作用决定了行星形成所需的气体和尘埃的组成。我们研究了挥发性化学(包括气相和表面反应)、粘性气体演化和径向尘埃漂移对行星组成的综合影响。我们探讨了在不同电离条件下的化学遗传和重置以及亚毫米范围内的粉尘颗粒尺寸。我们使用半解析的一维模型模拟了圆盘的演化过程,该模型将化学动力学与气体和尘埃的传输结合起来,考虑了粘性加热、湍流混合和难熔有机碳侵蚀。我们发现,质量传递在亚μm颗粒的化学演化中起着重要作用,特别是在经历过强烈加热或暴露于相对高水平电离辐射的圆盘中。相对较小的冰粒(~100 μm)的径向漂移可以在雪线内的气相中产生显著的挥发性富集,使H2O、CO2和NH3等物质的丰度增加多达一个数量级。早期星子的形成可以在短于0.5 Myr的时间尺度上导致内盘的挥发性耗损,而难降解有机碳的侵蚀可以导致明显的超恒星气相C/O和C/N比。值得注意的是,所分析的情景都不能再现早期模型预测的气相C/O比的经典单调径向趋势。我们的研究结果还表明,在主恒星组成的背景下,对元素比例进行两两比较,是在盘的特定区域分离不同情景特征的关键。我们的结论是,精确的行星形成模型必须同时考虑到行星盘的化学和动力学演化,以及它们初始化学和物理条件的可能多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信