{"title":"Scanning electron microscopy of hyphal ectobiont bacteria within mycelial extracellular matrices.","authors":"Davin Browner, Andrew Adamatzky","doi":"10.1016/j.bpr.2025.100233","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi and bacteria are found living in a wide variety of environments, and their interactions are important in many processes including soil health, human and animal physiology, and in biotechnological applications. Here, we investigate a single morphological feature of cocultures of planktonic bacterial growth within biofilm-forming liquid cultures of mycelium, namely, the attachment of bacterial ectobionts of species Bacillus subtilis to fungal hyphae of species Hericium erinaceus. The bacteria-in-mycelial-biofilm method was developed and utilized to allow for attachment of bacteria to hyphae via containment within exopolymeric substances (EPS) and the overall extracellular matrix of the mycelium. A graded dehydration protocol was used to selectively remove extraneous biofilm components and reveal intact bacteria and surface-interfacing features. The dehydration methods allowed for identification of specific interactions and differentiated these cultures from trivial stochastic mixing of bacteria and mycelium in liquid media. Attachment structures appear to be produced primarily by the mycelium and enveloped the bacterial ectobiont. Nanoscale surface-interfacing EPS constituents were preserved, providing a biophysical basis for a range of contact-dependent modulating properties of the bacteria on this fungal host. The mean biofilm area across triplicates was 3.90μm<sup>2</sup>±0.72μm<sup>2</sup>, and the mean percentage coverage was 18.33%±5.52%. The bacterial biofilm components could not be ruled out as co-contributing to formation of attachment structures due to the structures being present connecting individual bacteria as well as to hyphae.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100233"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fungi and bacteria are found living in a wide variety of environments, and their interactions are important in many processes including soil health, human and animal physiology, and in biotechnological applications. Here, we investigate a single morphological feature of cocultures of planktonic bacterial growth within biofilm-forming liquid cultures of mycelium, namely, the attachment of bacterial ectobionts of species Bacillus subtilis to fungal hyphae of species Hericium erinaceus. The bacteria-in-mycelial-biofilm method was developed and utilized to allow for attachment of bacteria to hyphae via containment within exopolymeric substances (EPS) and the overall extracellular matrix of the mycelium. A graded dehydration protocol was used to selectively remove extraneous biofilm components and reveal intact bacteria and surface-interfacing features. The dehydration methods allowed for identification of specific interactions and differentiated these cultures from trivial stochastic mixing of bacteria and mycelium in liquid media. Attachment structures appear to be produced primarily by the mycelium and enveloped the bacterial ectobiont. Nanoscale surface-interfacing EPS constituents were preserved, providing a biophysical basis for a range of contact-dependent modulating properties of the bacteria on this fungal host. The mean biofilm area across triplicates was 3.90μm2±0.72μm2, and the mean percentage coverage was 18.33%±5.52%. The bacterial biofilm components could not be ruled out as co-contributing to formation of attachment structures due to the structures being present connecting individual bacteria as well as to hyphae.