Myeloid-specific CAMKK2 deficiency protects against diet-induced obesity and insulin resistance by rewiring metabolic gene expression and enhancing energy expenditure
Andrea R. Ortiz , Kevin Nay , Brittany A. Stork , Adam M. Dean , Sean M. Hartig , Cristian Coarfa , Surafel Tegegne , Christopher RM. Asquith , Daniel E. Frigo , Brian York , Anthony R. Means , Mark A. Febbraio , John W. Scott
{"title":"Myeloid-specific CAMKK2 deficiency protects against diet-induced obesity and insulin resistance by rewiring metabolic gene expression and enhancing energy expenditure","authors":"Andrea R. Ortiz , Kevin Nay , Brittany A. Stork , Adam M. Dean , Sean M. Hartig , Cristian Coarfa , Surafel Tegegne , Christopher RM. Asquith , Daniel E. Frigo , Brian York , Anthony R. Means , Mark A. Febbraio , John W. Scott","doi":"10.1016/j.molmet.2025.102250","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Obesity is associated with chronic, low-grade inflammation in metabolic tissues such as liver, adipose tissue and skeletal muscle implicating insulin resistance and type 2 diabetes as inflammatory diseases. This inflammatory response involves the accumulation of pro-inflammatory macrophages in these metabolically relevant organs. The Ca<sup>2+</sup>-calmodulin-dependent protein kinase kinase-2 (CAMKK2) is a key regulator of cellular and systemic energy metabolism, and a coordinator of macrophage-mediated inflammatory responses. However, its role in obesity-associated metabolic dysfunction is not fully defined. The aim of this study was to determine the contribution of CAMKK2 to the regulation of inflammation and systemic metabolism during diet-induced obesity.</div></div><div><h3>Methods</h3><div>Mice with myeloid-specific deletion of <em>Camkk2</em> were generated and challenged with a high-fat diet. Metabolic phenotyping, histological analyses, and transcriptomic profiling were used to assess whole-body metabolism, liver lipid accumulation, and gene expression in macrophages and adipose tissue.</div></div><div><h3>Results</h3><div>Myeloid-specific <em>Camkk2</em> deficiency protected mice from high fat diet-induced obesity, insulin resistance and liver steatosis. These protective effects were associated with rewiring of metabolic and inflammatory gene expression in both macrophages and adipose tissue, along with enhanced whole-body energy expenditure.</div></div><div><h3>Conclusions</h3><div>Our data establish CAMKK2 as an important regulator of macrophage function and putative therapeutic target for treating obesity and related metabolic disorders.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"101 ","pages":"Article 102250"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825001577","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Obesity is associated with chronic, low-grade inflammation in metabolic tissues such as liver, adipose tissue and skeletal muscle implicating insulin resistance and type 2 diabetes as inflammatory diseases. This inflammatory response involves the accumulation of pro-inflammatory macrophages in these metabolically relevant organs. The Ca2+-calmodulin-dependent protein kinase kinase-2 (CAMKK2) is a key regulator of cellular and systemic energy metabolism, and a coordinator of macrophage-mediated inflammatory responses. However, its role in obesity-associated metabolic dysfunction is not fully defined. The aim of this study was to determine the contribution of CAMKK2 to the regulation of inflammation and systemic metabolism during diet-induced obesity.
Methods
Mice with myeloid-specific deletion of Camkk2 were generated and challenged with a high-fat diet. Metabolic phenotyping, histological analyses, and transcriptomic profiling were used to assess whole-body metabolism, liver lipid accumulation, and gene expression in macrophages and adipose tissue.
Results
Myeloid-specific Camkk2 deficiency protected mice from high fat diet-induced obesity, insulin resistance and liver steatosis. These protective effects were associated with rewiring of metabolic and inflammatory gene expression in both macrophages and adipose tissue, along with enhanced whole-body energy expenditure.
Conclusions
Our data establish CAMKK2 as an important regulator of macrophage function and putative therapeutic target for treating obesity and related metabolic disorders.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.