GPCR Biased Signaling in Metabolism.

Q1 Pharmacology, Toxicology and Pharmaceutics
Zhaoyu Zhang, Zijian Li
{"title":"GPCR Biased Signaling in Metabolism.","authors":"Zhaoyu Zhang, Zijian Li","doi":"10.1007/164_2025_774","DOIUrl":null,"url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and the most prominent drug targets. GPCR-biased signaling exerts different functions through distinct downstream signaling pathways of receptor to maintain body homeostasis. Metabolism is the series of biochemical processes that occur within a living organism to maintain life. GPCR-biased signaling and metabolism exhibit bidirectional interplay. On the one hand, metabolites including short-chain fatty acids (SCFAs) and long-chain fatty acids (LCFAs) act as ligands inducing biased GPCRs signaling. On the other hand, activated GPCRs regulate diverse metabolic functions by biased signal sorting (G protein or β-arrestin-mediated). G protein signaling mainly mediates rapid metabolic reaction, and β-arrestin signaling mainly mediates sustained metabolic effects. In clinical drug applications, GPCR-biased drugs can revolutionize metabolic disease therapeutics by enabling pathway-selective drug design to enhance efficacy while reducing side effects. Thus, delving deeper into the relationship between GPCR-biased signaling and metabolism is of great importance in physiology, pathology, and pharmacology. A systematic exploration of biased signaling will enhance insights into GPCRs-metabolism interactions, aiding disease mechanism studies, drug discovery, and clinical treatment strategies.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2025_774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and the most prominent drug targets. GPCR-biased signaling exerts different functions through distinct downstream signaling pathways of receptor to maintain body homeostasis. Metabolism is the series of biochemical processes that occur within a living organism to maintain life. GPCR-biased signaling and metabolism exhibit bidirectional interplay. On the one hand, metabolites including short-chain fatty acids (SCFAs) and long-chain fatty acids (LCFAs) act as ligands inducing biased GPCRs signaling. On the other hand, activated GPCRs regulate diverse metabolic functions by biased signal sorting (G protein or β-arrestin-mediated). G protein signaling mainly mediates rapid metabolic reaction, and β-arrestin signaling mainly mediates sustained metabolic effects. In clinical drug applications, GPCR-biased drugs can revolutionize metabolic disease therapeutics by enabling pathway-selective drug design to enhance efficacy while reducing side effects. Thus, delving deeper into the relationship between GPCR-biased signaling and metabolism is of great importance in physiology, pathology, and pharmacology. A systematic exploration of biased signaling will enhance insights into GPCRs-metabolism interactions, aiding disease mechanism studies, drug discovery, and clinical treatment strategies.

代谢中的GPCR偏倚信号传导。
G蛋白偶联受体(gpcr)是最大的跨膜受体家族,也是最突出的药物靶点。gpcr偏倚信号通过受体不同的下游信号通路发挥不同的功能,维持机体稳态。新陈代谢是生物体为维持生命而发生的一系列生化过程。gpcr偏倚信号和代谢表现出双向相互作用。一方面,包括短链脂肪酸(SCFAs)和长链脂肪酸(LCFAs)在内的代谢物作为配体诱导偏倚的gpcr信号传导。另一方面,激活的gpcr通过偏倚信号分选(G蛋白或β-阻滞蛋白介导)调节多种代谢功能。G蛋白信号主要介导快速代谢反应,β-阻滞蛋白信号主要介导持续代谢作用。在临床药物应用中,gpcr偏倚药物可以通过途径选择性药物设计来提高疗效,同时减少副作用,从而彻底改变代谢性疾病的治疗方法。因此,深入研究gpcr偏倚信号与代谢之间的关系在生理学、病理学和药理学方面具有重要意义。对偏倚信号的系统探索将增强对gpcr -代谢相互作用的认识,有助于疾病机制研究、药物发现和临床治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信