{"title":"Cryo-EM Observation of AA Amyloid Fibrils in Mouse Model of Systemic AApoAII Amyloidosis","authors":"Giada Andreotti , Keichii Higuchi , Matthias Schmidt , Marcus Fändrich","doi":"10.1016/j.jmb.2025.169438","DOIUrl":null,"url":null,"abstract":"<div><div>The co-deposition of amyloid fibrils from different precursor proteins is a topic of increasing relevance for protein misfolding diseases. Using cryo-electron microscopy (cryo-EM), we here determined the structures of two serum amyloid A (SAA) protein-derived amyloid fibril morphologies that were extracted from a mouse strain that is primarily known to be associated with apolipoprotein A-II-derived amyloid fibrils. The two fibril morphologies show the same protomer conformation as in previously reported ex vivo amyloid fibrils from SAA protein but a different relative arrangement of fibril protein stacks. These data establish that serum amyloid A-derived amyloid fibrils share the same fibril protein fold in different mouse strains and disease contexts.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 24","pages":"Article 169438"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625005042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The co-deposition of amyloid fibrils from different precursor proteins is a topic of increasing relevance for protein misfolding diseases. Using cryo-electron microscopy (cryo-EM), we here determined the structures of two serum amyloid A (SAA) protein-derived amyloid fibril morphologies that were extracted from a mouse strain that is primarily known to be associated with apolipoprotein A-II-derived amyloid fibrils. The two fibril morphologies show the same protomer conformation as in previously reported ex vivo amyloid fibrils from SAA protein but a different relative arrangement of fibril protein stacks. These data establish that serum amyloid A-derived amyloid fibrils share the same fibril protein fold in different mouse strains and disease contexts.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.