{"title":"Decoding the Central Dogma: Quantitative Insights into Transcription and Translation Dynamics in the p53-Mediated DNA Damage Response.","authors":"Joshua François, Ashwini Jambhekar, Galit Lahav","doi":"10.1016/j.jmb.2025.169436","DOIUrl":null,"url":null,"abstract":"<p><p>The central dogma describes the flow of genetic information from DNA to RNA and then to protein, a process regulated at multiple steps with the potential for reverse information flow. DNA damage, caused by external factors like radiation or internal processes, poses a threat to genomic stability and necessitates a robust DNA damage response (DDR). The tumor suppressor protein p53 is a pivotal component of the DDR, orchestrating gene expression to repair DNA, halt the growth of damaged cells or trigger cell death. Here, we discuss various quantitative methods that enabled new insights into p53 regulation of transcription and translation dynamics in response to DNA damage. Imaging techniques, such as live-cell fluorescence microscopy, have enabled the visualization of both p53 and the mRNA and protein levels of its key targets, such as MDM2, a negative regulator of p53; and p21, a key regulator of the cell cycle. Singe-cell live imaging of p53 in response to various DNA damaging agents, and in combination with inhibitors of its key regulators, suggested p53 dynamics as an important mechanism controlling cell fate and enabled the development of quantitative models for the control of p53 levels. Omics approaches complement imaging by offering comprehensive, quantitative insights into mRNA and protein changes following DNA damage. Mathematical models connect p53 dynamics with target gene regulation, revealing complexities in transcription-translation relationships. Integrating these methods can elucidate DDR intricacies at the single-cell level, enhancing our understanding of p53's role in regulating gene expression and cell fate determination.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169436"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169436","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The central dogma describes the flow of genetic information from DNA to RNA and then to protein, a process regulated at multiple steps with the potential for reverse information flow. DNA damage, caused by external factors like radiation or internal processes, poses a threat to genomic stability and necessitates a robust DNA damage response (DDR). The tumor suppressor protein p53 is a pivotal component of the DDR, orchestrating gene expression to repair DNA, halt the growth of damaged cells or trigger cell death. Here, we discuss various quantitative methods that enabled new insights into p53 regulation of transcription and translation dynamics in response to DNA damage. Imaging techniques, such as live-cell fluorescence microscopy, have enabled the visualization of both p53 and the mRNA and protein levels of its key targets, such as MDM2, a negative regulator of p53; and p21, a key regulator of the cell cycle. Singe-cell live imaging of p53 in response to various DNA damaging agents, and in combination with inhibitors of its key regulators, suggested p53 dynamics as an important mechanism controlling cell fate and enabled the development of quantitative models for the control of p53 levels. Omics approaches complement imaging by offering comprehensive, quantitative insights into mRNA and protein changes following DNA damage. Mathematical models connect p53 dynamics with target gene regulation, revealing complexities in transcription-translation relationships. Integrating these methods can elucidate DDR intricacies at the single-cell level, enhancing our understanding of p53's role in regulating gene expression and cell fate determination.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.