Robust Time-Inconsistent Linear-Quadratic Stochastic Controls: A Stochastic Differential Game Approach

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Bingyan Han, Chi Seng Pun, Hoi Ying Wong
{"title":"Robust Time-Inconsistent Linear-Quadratic Stochastic Controls: A Stochastic Differential Game Approach","authors":"Bingyan Han,&nbsp;Chi Seng Pun,&nbsp;Hoi Ying Wong","doi":"10.1007/s00245-025-10310-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies robust time-inconsistent (TIC) linear-quadratic stochastic control problems, formulated by stochastic differential games. By a spike variation approach, we derive sufficient conditions for achieving the Nash equilibrium, which corresponds to a time-consistent (TC) robust policy, under mild technical assumptions. To illustrate our framework, we consider two scenarios of robust mean-variance analysis, namely with state- and control-dependent ambiguity aversion. We find numerically that with time inconsistency haunting the dynamic optimal controls, the ambiguity aversion enhances the effective risk aversion faster than the linear, implying that the ambiguity in the TIC cases is more impactful than that under the TC counterparts, e.g., expected utility maximization problems.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10310-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies robust time-inconsistent (TIC) linear-quadratic stochastic control problems, formulated by stochastic differential games. By a spike variation approach, we derive sufficient conditions for achieving the Nash equilibrium, which corresponds to a time-consistent (TC) robust policy, under mild technical assumptions. To illustrate our framework, we consider two scenarios of robust mean-variance analysis, namely with state- and control-dependent ambiguity aversion. We find numerically that with time inconsistency haunting the dynamic optimal controls, the ambiguity aversion enhances the effective risk aversion faster than the linear, implying that the ambiguity in the TIC cases is more impactful than that under the TC counterparts, e.g., expected utility maximization problems.

鲁棒时间不一致线性二次随机控制:随机微分对策方法
研究了用随机微分对策表示的鲁棒时间不一致线性二次随机控制问题。在温和的技术假设下,通过尖峰变化方法,我们得到了实现纳什均衡的充分条件,它对应于时间一致(TC)稳健策略。为了说明我们的框架,我们考虑了稳健均值方差分析的两种情况,即状态依赖和控制依赖的歧义厌恶。我们在数值上发现,当动态最优控制存在时间不一致性时,歧义规避比线性规避更快地增强有效风险规避,这意味着TIC情况下的歧义比TC情况下的歧义更有影响力,例如期望效用最大化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信