Photo-induced enhancement of reverse water–gas shift over Mo-modified cerium oxide†

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Daichi Takami , Naoto Doshita , Ryosuke Sugiura , Yasutaka Kuwahara , Hiromi Yamashita
{"title":"Photo-induced enhancement of reverse water–gas shift over Mo-modified cerium oxide†","authors":"Daichi Takami ,&nbsp;Naoto Doshita ,&nbsp;Ryosuke Sugiura ,&nbsp;Yasutaka Kuwahara ,&nbsp;Hiromi Yamashita","doi":"10.1039/d5cy00597c","DOIUrl":null,"url":null,"abstract":"<div><div>The reverse water–gas shift (RWGS) reaction, converting CO<sub>2</sub> into CO, is a promising approach for sustainable carbon utilization. However, high energy demand poses significant barriers to its practical application. Here, we report the development of platinum-loaded metal-modified cerium oxide catalysts (Pt/M<sub><em>x</em></sub>Ce<sub>1−<em>x</em></sub>O<sub><em>y</em></sub>), designed to enhance RWGS reaction efficiency through photocatalytic and photothermal catalytic approaches, aiming at solar light utilization. Mo-modified catalysts exhibited a high CO formation rate of 10.2 mmol g<sup>−1</sup> h<sup>−1</sup> at 473 K in the dark and 23.5 mmol g<sup>−1</sup> h<sup>−1</sup> under visible and near-infrared light irradiation, which outperformed the catalytic activity of the pristine Pt/CeO<sub><em>y</em></sub> catalyst. Detailed characterization revealed that Mo doping improved CO<sub>2</sub> adsorption and dissociation capability. Moreover, under visible-NIR light irradiation, the catalyst performance further improved due to thermal and non-thermal effects of light irradiation. These findings highlight a dual enhancement mechanism—light-induced thermal and non-thermal pathways—that significantly boosts catalytic efficiency. This study provides valuable insights into designing advanced light-responsive catalysts, offering a promising pathway toward efficient and sustainable CO<sub>2</sub> conversion technologies.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 18","pages":"Pages 5285-5294"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325003521","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reverse water–gas shift (RWGS) reaction, converting CO2 into CO, is a promising approach for sustainable carbon utilization. However, high energy demand poses significant barriers to its practical application. Here, we report the development of platinum-loaded metal-modified cerium oxide catalysts (Pt/MxCe1−xOy), designed to enhance RWGS reaction efficiency through photocatalytic and photothermal catalytic approaches, aiming at solar light utilization. Mo-modified catalysts exhibited a high CO formation rate of 10.2 mmol g−1 h−1 at 473 K in the dark and 23.5 mmol g−1 h−1 under visible and near-infrared light irradiation, which outperformed the catalytic activity of the pristine Pt/CeOy catalyst. Detailed characterization revealed that Mo doping improved CO2 adsorption and dissociation capability. Moreover, under visible-NIR light irradiation, the catalyst performance further improved due to thermal and non-thermal effects of light irradiation. These findings highlight a dual enhancement mechanism—light-induced thermal and non-thermal pathways—that significantly boosts catalytic efficiency. This study provides valuable insights into designing advanced light-responsive catalysts, offering a promising pathway toward efficient and sustainable CO2 conversion technologies.

Abstract Image

mo修饰氧化铈†上逆水气转换的光诱导增强
将CO2转化为CO的逆水气转换反应(RWGS)是一种很有前途的可持续碳利用方法。然而,高能源需求对其实际应用构成了重大障碍。在这里,我们报道了铂负载金属修饰氧化铈催化剂(Pt/MxCe1−xOy)的开发,旨在通过光催化和光热催化方法提高RWGS反应效率,旨在利用太阳能。mo修饰催化剂在暗处473 K下的CO生成速率为10.2 mmol g−1 h−1,在可见光和近红外光照射下的CO生成速率为23.5 mmol g−1 h−1,其催化活性优于原始Pt/CeOy催化剂。详细表征表明,Mo掺杂提高了CO2的吸附和解离能力。此外,在可见光-近红外光照射下,由于光照射的热效应和非热效应,催化剂的性能进一步提高。这些发现强调了双重增强机制——光诱导的热和非热途径——显著提高了催化效率。这项研究为设计先进的光反应催化剂提供了有价值的见解,为高效和可持续的二氧化碳转化技术提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信