Applying weighted Cox regression to genome-wide association studies of time-to-event phenotypes.

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ying Li, Yuzhuo Ma, He Xu, Yaoyao Sun, Min Zhu, Weihua Yue, Wei Zhou, Wenjian Bi
{"title":"Applying weighted Cox regression to genome-wide association studies of time-to-event phenotypes.","authors":"Ying Li, Yuzhuo Ma, He Xu, Yaoyao Sun, Min Zhu, Weihua Yue, Wei Zhou, Wenjian Bi","doi":"10.1038/s43588-025-00864-z","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing availability of time-stamped electronic health records linked to genetic data in large biobanks and cohorts, time-to-event phenotypes are increasingly studied in genome-wide association studies. Although numerous Cox-regression-based methods have been proposed for a large-scale genome-wide association study, case ascertainment in time-to-event phenotypes has not been well addressed. Here we propose a computationally efficient Cox-based method, named WtCoxG, that accounts for case ascertainment by fitting a weighted Cox proportional hazards null model. A hybrid strategy incorporating saddlepoint approximation largely increases its accuracy when analyzing low-frequency and rare variants. Notably, by leveraging external minor allele frequencies from public resources, WtCoxG further boosts statistical power. Extensive simulation studies demonstrated that WtCoxG is more powerful than ADuLT and other Cox-based methods, while effectively controlling type I error rates. UK Biobank real data analysis validated that leveraging external minor allele frequencies contributes to the power gains of WtCoxG compared with ADuLT in the analysis of type 2 diabetes and coronary atherosclerosis.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00864-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing availability of time-stamped electronic health records linked to genetic data in large biobanks and cohorts, time-to-event phenotypes are increasingly studied in genome-wide association studies. Although numerous Cox-regression-based methods have been proposed for a large-scale genome-wide association study, case ascertainment in time-to-event phenotypes has not been well addressed. Here we propose a computationally efficient Cox-based method, named WtCoxG, that accounts for case ascertainment by fitting a weighted Cox proportional hazards null model. A hybrid strategy incorporating saddlepoint approximation largely increases its accuracy when analyzing low-frequency and rare variants. Notably, by leveraging external minor allele frequencies from public resources, WtCoxG further boosts statistical power. Extensive simulation studies demonstrated that WtCoxG is more powerful than ADuLT and other Cox-based methods, while effectively controlling type I error rates. UK Biobank real data analysis validated that leveraging external minor allele frequencies contributes to the power gains of WtCoxG compared with ADuLT in the analysis of type 2 diabetes and coronary atherosclerosis.

将加权Cox回归应用于事件时间表型的全基因组关联研究。
随着大型生物库和队列中与遗传数据相关的带时间戳的电子健康记录越来越多,全基因组关联研究越来越多地研究事件时间表型。尽管许多基于cox回归的方法已被提出用于大规模全基因组关联研究,但事件时间表型的病例确定尚未得到很好的解决。在这里,我们提出了一种计算效率高的基于Cox的方法,名为WtCoxG,它通过拟合加权Cox比例风险零模型来确定病例。结合鞍点近似的混合策略在分析低频和罕见变异时大大提高了准确性。值得注意的是,通过利用来自公共资源的外部小等位基因频率,WtCoxG进一步提高了统计能力。大量的仿真研究表明,WtCoxG比ADuLT和其他基于cox的方法更强大,同时有效地控制了I型错误率。UK Biobank的真实数据分析证实,与ADuLT相比,利用外部次要等位基因频率有助于WtCoxG在2型糖尿病和冠状动脉粥样硬化分析中的功率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信