{"title":"Fumarate hydratase ameliorates pressure overload induced cardiac remodeling by controlling Elovl7-mediated biosynthesis of unsaturated fatty acids.","authors":"Lan-Lan Li, Chao-Jun Sun, Xiao-Tong Mo, Yun Xing, Tong Zhang, Heng Zhang, Nan Zhao, Xiao-Feng Zeng, Sha-Sha Wang, Yan-Yan Meng, Sai-Yang Xie, Wei Deng","doi":"10.1038/s41401-025-01637-0","DOIUrl":null,"url":null,"abstract":"<p><p>Pathological cardiac hypertrophy as a major contributor to heart failure is characterized by complicated mechanisms. Fumarate hydratase (FH) is a crucial enzyme in the tricarboxylic acid cycle. FH mutations and dysfunction have been implicated in various pathological processes including hereditary leiomyomatosis and renal cell cancer, neurodegenerative diseases, metabolic syndrome and cardiovascular diseases. In this study we investigated the role of FH in cardiac hypertrophy. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery as well as in neonatal rat cardiomyocytes (NRCMs) by phenylephrine (PE) stimulation. We showed that the expression levels of FH were gradually increased with development of cardiac hypertrophy in TAC mice. Cardiomyocyte-specific overexpression of FH by intravenous injection of recombinant adeno-associated virus serotype 9 (AAV9) carrying FH two weeks before TAC surgery prevented the morphological changes, cardiac dysfunction and remodeling in TAC mice; FH overexpression also significantly attenuated PE-induced hypertrophy in NRCMs along with suppressed expression of hypertrophic markers ANP, BNP and β-MHC. We demonstrated that FH overexpression alleviated TAC-induced mitochondrial structural damage in cardiomyocytes and facilitated metabolic remodeling. RNA sequencing and untargeted metabolomics revealed that FH overexpression mitigated myocardial remodeling and mitochondrial metabolism dysfunction in TAC mice mainly by suppressing the transcription factor SREBP and reducing the gene expression of elongation of very long chain fatty acids protein 7 (Elovl7). Overexpression of Elovl7 reversed the protective effects of FH in both TAC mice and PE-stimulated NRCMs. Knockdown of the transcription factor SREBP reduced Elovl7 expression, thereby exerting cardioprotective effects. In conclusion, we demonstrate that FH overexpression prevents cardiac hypertrophy in mice by regulating glucose and lipid metabolism through the malate-SREBP-Elovl7 pathway.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01637-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathological cardiac hypertrophy as a major contributor to heart failure is characterized by complicated mechanisms. Fumarate hydratase (FH) is a crucial enzyme in the tricarboxylic acid cycle. FH mutations and dysfunction have been implicated in various pathological processes including hereditary leiomyomatosis and renal cell cancer, neurodegenerative diseases, metabolic syndrome and cardiovascular diseases. In this study we investigated the role of FH in cardiac hypertrophy. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery as well as in neonatal rat cardiomyocytes (NRCMs) by phenylephrine (PE) stimulation. We showed that the expression levels of FH were gradually increased with development of cardiac hypertrophy in TAC mice. Cardiomyocyte-specific overexpression of FH by intravenous injection of recombinant adeno-associated virus serotype 9 (AAV9) carrying FH two weeks before TAC surgery prevented the morphological changes, cardiac dysfunction and remodeling in TAC mice; FH overexpression also significantly attenuated PE-induced hypertrophy in NRCMs along with suppressed expression of hypertrophic markers ANP, BNP and β-MHC. We demonstrated that FH overexpression alleviated TAC-induced mitochondrial structural damage in cardiomyocytes and facilitated metabolic remodeling. RNA sequencing and untargeted metabolomics revealed that FH overexpression mitigated myocardial remodeling and mitochondrial metabolism dysfunction in TAC mice mainly by suppressing the transcription factor SREBP and reducing the gene expression of elongation of very long chain fatty acids protein 7 (Elovl7). Overexpression of Elovl7 reversed the protective effects of FH in both TAC mice and PE-stimulated NRCMs. Knockdown of the transcription factor SREBP reduced Elovl7 expression, thereby exerting cardioprotective effects. In conclusion, we demonstrate that FH overexpression prevents cardiac hypertrophy in mice by regulating glucose and lipid metabolism through the malate-SREBP-Elovl7 pathway.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.