Airway sympathectomy attenuates inflammation, transcriptional ratios of Muc5ac and Muc5b, and airway mechanic deficits in mice delivered intranasal IL-13.
Pedro Trevizan-Baú, Amy L Fagan, Shanil P Amin, Leah R Reznikov
{"title":"Airway sympathectomy attenuates inflammation, transcriptional ratios of Muc5ac and Muc5b, and airway mechanic deficits in mice delivered intranasal IL-13.","authors":"Pedro Trevizan-Baú, Amy L Fagan, Shanil P Amin, Leah R Reznikov","doi":"10.1152/ajplung.00139.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive mucus in the airways is an underlying pathological feature of many airway diseases, including asthma. Therapeutic options to reduce mucus production in the airways remain limited. One possible therapeutic target is the airway sympathetic nerves. Although lung sympathetic innervation has been considered sparse, sympathetic nerves secrete neurotransmitters that act on adrenergic receptors, including β<sub>2</sub>-adrenergic receptor (β<sub>2</sub>AR). Interestingly, in experimental models, chronic use β<sub>2</sub>AR agonists can augment mucus secretion. Thus, in the present study, we tested the hypothesis that airway sympathetic nerves regulate mucus production in the airway in response to the type 2 cytokine interleukin 13 (IL-13). We performed airway sympathectomy using intranasal instillation of the synthetic neurotoxin 6-hydroxydopamine (6-OHDA). Airway sympathectomy attenuated multiple IL-13-mediated airway deficits, including density of goblet cells containing neutral mucins, transcriptional ratio of mucin 5ac (Muc5ac) to mucin 5b (Muc5b) and airway elastance and tissue damping. Although total <i>Muc5ac</i> and <i>Muc5b</i> transcript levels and Muc5ac and Muc5b protein levels in bronchoalveolar lavage were not significantly altered, these changes suggest that airway sympathectomy modifies goblet cell phenotype and mucin composition. Airway sympathectomy also dampened IL-13 mediated increases in total lung transcripts important for regulating allergic responses, including interleukin 6, complement component 3, and colony stimulating factor. This study reveals that airway sympathetic nerves regulate physiologic, molecular, and inflammatory responses to type 2 (IL-13-mediated) airway inflammation and raises the possibility that they may serve as potential targets for therapeutic intervention.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00139.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive mucus in the airways is an underlying pathological feature of many airway diseases, including asthma. Therapeutic options to reduce mucus production in the airways remain limited. One possible therapeutic target is the airway sympathetic nerves. Although lung sympathetic innervation has been considered sparse, sympathetic nerves secrete neurotransmitters that act on adrenergic receptors, including β2-adrenergic receptor (β2AR). Interestingly, in experimental models, chronic use β2AR agonists can augment mucus secretion. Thus, in the present study, we tested the hypothesis that airway sympathetic nerves regulate mucus production in the airway in response to the type 2 cytokine interleukin 13 (IL-13). We performed airway sympathectomy using intranasal instillation of the synthetic neurotoxin 6-hydroxydopamine (6-OHDA). Airway sympathectomy attenuated multiple IL-13-mediated airway deficits, including density of goblet cells containing neutral mucins, transcriptional ratio of mucin 5ac (Muc5ac) to mucin 5b (Muc5b) and airway elastance and tissue damping. Although total Muc5ac and Muc5b transcript levels and Muc5ac and Muc5b protein levels in bronchoalveolar lavage were not significantly altered, these changes suggest that airway sympathectomy modifies goblet cell phenotype and mucin composition. Airway sympathectomy also dampened IL-13 mediated increases in total lung transcripts important for regulating allergic responses, including interleukin 6, complement component 3, and colony stimulating factor. This study reveals that airway sympathetic nerves regulate physiologic, molecular, and inflammatory responses to type 2 (IL-13-mediated) airway inflammation and raises the possibility that they may serve as potential targets for therapeutic intervention.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.