Quantum Size Effect in Optically Active Indium Selenide Crystal Phase Heterostructures Grown by Molecular Beam Epitaxy

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Piotr Wojnar, Maciej Wójcik, Piotr Baranowski, Jacek Kossut, Marta Aleszkiewicz, Jaroslaw Z. Domagala, Róża Dziewiątkowska, Jakub Głuch, Paweł Ciepielewski, Maksymilian Kuna, Zuzanna Kostera, Slawomir Kret, Sergij Chusnutdinow
{"title":"Quantum Size Effect in Optically Active Indium Selenide Crystal Phase Heterostructures Grown by Molecular Beam Epitaxy","authors":"Piotr Wojnar,&nbsp;Maciej Wójcik,&nbsp;Piotr Baranowski,&nbsp;Jacek Kossut,&nbsp;Marta Aleszkiewicz,&nbsp;Jaroslaw Z. Domagala,&nbsp;Róża Dziewiątkowska,&nbsp;Jakub Głuch,&nbsp;Paweł Ciepielewski,&nbsp;Maksymilian Kuna,&nbsp;Zuzanna Kostera,&nbsp;Slawomir Kret,&nbsp;Sergij Chusnutdinow","doi":"10.1002/adom.202500738","DOIUrl":null,"url":null,"abstract":"<p>Indium selenide attracts the interest due to its outstanding electronic and optical properties, which are potentially prospective in view of applications in electronic and photonic devices. Most of the polymorphic crystal phases of this semiconductor belong to the family of 2D van der Waals semiconductors. In this study, optically active indium selenide crystal phase heterostructures are fabricated by molecular beam epitaxy in a well-controlled manner. It is demonstrated that by changing the growth conditions one may obtain either γ-InSe, or γ-In<sub>2</sub>Se<sub>3</sub>, or β-In<sub>2</sub>Se<sub>3</sub> crystal phases. The most promising crystal phase heterostructures from the point of view of photonic applications is found to be the γ-InSe/γ-In<sub>2</sub>Se<sub>3</sub> heterostructure. An intense optical emission from this heterostructure appears in the near infrared spectral range. The emission energy can be tuned over 250 meV by changing γ-InSe layer thickness, which is explained by the quantum size effect. The optically active indium selenide crystal phase heterostructures represent, therefore, an interesting platform for the design of light sources and detectors in the near infra-red. The use of molecular beam epitaxy for this purpose ensures that the structures are fabricated on large surfaces opening the possibility for the design of device prototypes by using lithography methods.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 26","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500738","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Indium selenide attracts the interest due to its outstanding electronic and optical properties, which are potentially prospective in view of applications in electronic and photonic devices. Most of the polymorphic crystal phases of this semiconductor belong to the family of 2D van der Waals semiconductors. In this study, optically active indium selenide crystal phase heterostructures are fabricated by molecular beam epitaxy in a well-controlled manner. It is demonstrated that by changing the growth conditions one may obtain either γ-InSe, or γ-In2Se3, or β-In2Se3 crystal phases. The most promising crystal phase heterostructures from the point of view of photonic applications is found to be the γ-InSe/γ-In2Se3 heterostructure. An intense optical emission from this heterostructure appears in the near infrared spectral range. The emission energy can be tuned over 250 meV by changing γ-InSe layer thickness, which is explained by the quantum size effect. The optically active indium selenide crystal phase heterostructures represent, therefore, an interesting platform for the design of light sources and detectors in the near infra-red. The use of molecular beam epitaxy for this purpose ensures that the structures are fabricated on large surfaces opening the possibility for the design of device prototypes by using lithography methods.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

分子束外延生长光活性硒化铟晶体相异质结构中的量子尺寸效应
硒化铟因其优异的电子和光学性能而受到人们的关注,在电子和光子器件中具有潜在的应用前景。该半导体的多晶相大部分属于二维范德华半导体族。在本研究中,利用分子束外延在可控的条件下制备了具有光学活性的硒化铟晶体相异质结构。结果表明,通过改变生长条件可以得到γ-InSe、γ-In2Se3或β-In2Se3晶体相。从光子应用的角度来看,发现最有前途的晶体相异质结构是γ-InSe/γ-In2Se3异质结构。这种异质结构在近红外光谱范围内出现强烈的光学发射。通过改变γ-InSe层厚度,可以将发射能量调谐到250 meV以上,这可以用量子尺寸效应来解释。因此,光学活性硒化铟晶体相异质结构为近红外光源和探测器的设计提供了一个有趣的平台。为此,分子束外延的使用确保了结构在大表面上制造,从而为使用光刻方法设计器件原型提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信