Milked-Extracted Macromolecules Constructing Bio-Interphase to Realise Dendrite-Free Aqueous Zinc Metal Batteries With Long Cycle Life

IF 12
Jianfei Shi, Xin Shen, Yuting Qin, Jiahui Lu, Chengyin Wang, Tianyi Wang, Guoxiu Wang
{"title":"Milked-Extracted Macromolecules Constructing Bio-Interphase to Realise Dendrite-Free Aqueous Zinc Metal Batteries With Long Cycle Life","authors":"Jianfei Shi,&nbsp;Xin Shen,&nbsp;Yuting Qin,&nbsp;Jiahui Lu,&nbsp;Chengyin Wang,&nbsp;Tianyi Wang,&nbsp;Guoxiu Wang","doi":"10.1002/cnl2.70046","DOIUrl":null,"url":null,"abstract":"<p>Dairy-derived biomacromolecules offer a sustainable and bio-functional platform for interfacial engineering in aqueous zinc-ion batteries (AZIBs). Herein, we present a comparative study using three milk-based substances—casein (CA), whey protein (WP) and enzymatically hydrolysed whey protein peptides (WPPs)—to construct artificial solid electrolyte interphase (SEI) coatings on Zn metal anodes. These protein-based films, rich in functional groups such as ─COOH, ─NH₂ and ─SH, chelate with Zn<sup>2+</sup> and form conformal, ion-conductive protection layers that mitigate side reactions and dendrite growth. Among them, the WPP-derived SEI exhibits superior interfacial compatibility and molecular mobility, promoting homogeneous Zn deposition and significantly enhanced cycling stability. Zn||Zn symmetric cells with the WPP coating achieved an ultralong lifespan exceeding 3000 h, markedly outperforming WP- and casein-based counterparts. Furthermore, Zn||V<sub>2</sub>O<sub>5</sub> full batteries employing WPP-coated Zn anodes delivered a high capacity and extended cyclability. This study not only highlights the interfacial regulation mechanisms of dairy-derived biomolecules but also offers a green and cost-effective strategy for developing high-performance aqueous zinc-ion batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dairy-derived biomacromolecules offer a sustainable and bio-functional platform for interfacial engineering in aqueous zinc-ion batteries (AZIBs). Herein, we present a comparative study using three milk-based substances—casein (CA), whey protein (WP) and enzymatically hydrolysed whey protein peptides (WPPs)—to construct artificial solid electrolyte interphase (SEI) coatings on Zn metal anodes. These protein-based films, rich in functional groups such as ─COOH, ─NH₂ and ─SH, chelate with Zn2+ and form conformal, ion-conductive protection layers that mitigate side reactions and dendrite growth. Among them, the WPP-derived SEI exhibits superior interfacial compatibility and molecular mobility, promoting homogeneous Zn deposition and significantly enhanced cycling stability. Zn||Zn symmetric cells with the WPP coating achieved an ultralong lifespan exceeding 3000 h, markedly outperforming WP- and casein-based counterparts. Furthermore, Zn||V2O5 full batteries employing WPP-coated Zn anodes delivered a high capacity and extended cyclability. This study not only highlights the interfacial regulation mechanisms of dairy-derived biomolecules but also offers a green and cost-effective strategy for developing high-performance aqueous zinc-ion batteries.

Abstract Image

牛奶萃取大分子构建生物界面实现长循环寿命无枝晶锌金属水电池
乳制品衍生的生物大分子为水锌离子电池(AZIBs)的界面工程提供了一个可持续的生物功能平台。本研究采用酪蛋白(CA)、乳清蛋白(WP)和酶解乳清蛋白肽(WPPs)三种乳基物质在锌金属阳极上构建人工固体电解质间相(SEI)涂层。这些基于蛋白质的薄膜富含─COOH、─NH₂和─SH等官能团,与Zn2+螯合,形成共形的离子导电保护层,减轻副反应和树突生长。其中,wpp衍生的SEI表现出优异的界面相容性和分子迁移性,促进了Zn的均匀沉积,显著增强了循环稳定性。采用WPP涂层的锌对称电池的寿命超过3000小时,明显优于基于WP和酪蛋白的电池。此外,采用wpp涂层锌阳极的zb|v2o5全电池具有高容量和延长的可循环性。本研究不仅揭示了乳源性生物分子的界面调控机制,而且为开发高性能的水性锌离子电池提供了一种绿色、经济的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信