Predicting Stock Jumps and Crashes Using Options

IF 2.3 4区 经济学 Q2 BUSINESS, FINANCE
Panayiotis C. Andreou, Chulwoo Han, Nan Li
{"title":"Predicting Stock Jumps and Crashes Using Options","authors":"Panayiotis C. Andreou,&nbsp;Chulwoo Han,&nbsp;Nan Li","doi":"10.1002/fut.22609","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper investigates the informativeness of option-implied volatility and Greeks in forecasting extreme stock returns. Using a large data set of U.S. stocks and options from 1996 to 2022 and employing Light Gradient-Boosting Machine as a machine learning algorithm, we show that option characteristics, particularly implied volatility and delta, are strong predictors of extreme returns. The long–short portfolio utilizing option variables significantly outperforms a benchmark using only stock characteristics, suggesting that options provide information beyond what can be inferred from stock characteristics. Put options are revealed to be more informative than call options, and crashes are easier to predict than jumps.</p>\n </div>","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"45 10","pages":"1471-1490"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fut.22609","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the informativeness of option-implied volatility and Greeks in forecasting extreme stock returns. Using a large data set of U.S. stocks and options from 1996 to 2022 and employing Light Gradient-Boosting Machine as a machine learning algorithm, we show that option characteristics, particularly implied volatility and delta, are strong predictors of extreme returns. The long–short portfolio utilizing option variables significantly outperforms a benchmark using only stock characteristics, suggesting that options provide information beyond what can be inferred from stock characteristics. Put options are revealed to be more informative than call options, and crashes are easier to predict than jumps.

使用期权预测股票的跳跃和崩溃
本文研究了期权隐含波动率和希腊值在预测股票极端收益中的信息量。使用1996年至2022年的美国股票和期权的大型数据集,并使用Light Gradient-Boosting Machine作为机器学习算法,我们表明期权特征,特别是隐含波动率和delta,是极端回报的强大预测指标。利用期权变量的多空组合明显优于仅使用股票特征的基准,这表明期权提供的信息超出了从股票特征推断出来的信息。看跌期权比看涨期权提供的信息更多,而暴跌比跳跃更容易预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Futures Markets
Journal of Futures Markets BUSINESS, FINANCE-
CiteScore
3.70
自引率
15.80%
发文量
91
期刊介绍: The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信