Classification of Track (Bi)Categories via Group-Valued 3-Cocycles

IF 0.5 4区 数学 Q3 MATHEMATICS
Antonio M. Cegarra
{"title":"Classification of Track (Bi)Categories via Group-Valued 3-Cocycles","authors":"Antonio M. Cegarra","doi":"10.1007/s10485-025-09825-z","DOIUrl":null,"url":null,"abstract":"<div><p>Track bicategories, where each hom-category is a groupoid, appear in various mathematical and physical contexts. In this paper, we establish a cohomological classification of track bicategories and track categories using group-valued 3-cocycles on small categories, formulated as lax functors into the one-object 3-category of groups. In the abelian case, this classification aligns with Baues-Wirsching cohomology for small categories with coefficients in natural systems, recovering previously known classification results.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09825-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Track bicategories, where each hom-category is a groupoid, appear in various mathematical and physical contexts. In this paper, we establish a cohomological classification of track bicategories and track categories using group-valued 3-cocycles on small categories, formulated as lax functors into the one-object 3-category of groups. In the abelian case, this classification aligns with Baues-Wirsching cohomology for small categories with coefficients in natural systems, recovering previously known classification results.

基于群值3-环的轨道(Bi)类分类
跟踪双类别,其中每个人类别是一个群,出现在各种数学和物理环境中。本文利用小范畴上的群值3-环,建立了轨道双范畴和轨道范畴的上同调分类。在阿贝尔情况下,这种分类与自然系统中具有系数的小类别的Baues-Wirsching上同调一致,恢复了以前已知的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信