A scaling law for a model of epitaxially strained elastic films with dislocations

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
J. Ginster, L. Neubauer, B. Zwicknagl
{"title":"A scaling law for a model of epitaxially strained elastic films with dislocations","authors":"J. Ginster,&nbsp;L. Neubauer,&nbsp;B. Zwicknagl","doi":"10.1007/s00205-025-02117-9","DOIUrl":null,"url":null,"abstract":"<div><p>A static variational model for shape formation in heteroepitaxial crystal growth is considered. The energy functional takes into account surface energy, elastic misfit-energy and nucleation energy of dislocations. A scaling law for the infimal energy is proven. The results quantify the expectation that in certain parameter regimes, island formation or topological defects are favorable. This generalizes results in the purely elastic setting from [23]. To handle dislocations in the lower bound, a new variant of a ball-construction combined with thorough local estimates is presented.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02117-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02117-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A static variational model for shape formation in heteroepitaxial crystal growth is considered. The energy functional takes into account surface energy, elastic misfit-energy and nucleation energy of dislocations. A scaling law for the infimal energy is proven. The results quantify the expectation that in certain parameter regimes, island formation or topological defects are favorable. This generalizes results in the purely elastic setting from [23]. To handle dislocations in the lower bound, a new variant of a ball-construction combined with thorough local estimates is presented.

具有位错的外延应变弹性薄膜模型的标度律
本文考虑了异质外延晶体生长中形状形成的静态变分模型。能量泛函考虑了位错的表面能、弹性失配能和成核能。证明了能量无穷大的标度定律。结果量化了在某些参数条件下,岛屿形成或拓扑缺陷是有利的期望。这概括了[23]的纯弹性设置的结果。为了处理下界的位错,提出了一种结合全面局部估计的球结构的新变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信