Geometric compensation of process-induced deformation in hybrid unidirectional/woven CFRP composites with multi-layup sequence using a physics-driven reverse deformation approach
{"title":"Geometric compensation of process-induced deformation in hybrid unidirectional/woven CFRP composites with multi-layup sequence using a physics-driven reverse deformation approach","authors":"Dong-Hyeop Kim , Sang-Woo Kim","doi":"10.1016/j.finel.2025.104446","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel physics-based geometric compensation methodology to mitigate process-induced deformation (PID) in hybrid unidirectional/woven CFRP composite structures. Reverse deformation to compensate PID is induced by inverting the layup sequence, while the deformation magnitude is precisely adjusted using scaling factors, which are determined via fitting-based optimization and applied to thermochemical strain coefficients. The methodology is implemented through thermo-mechanical simulations using the finite element method, integrating cure-dependent material behavior, effective material properties, and thermal and chemical strains to accurately predict PID. The capability of the proposed methodology is demonstrated through extensive simulations of hybrid CFRP laminates, specifically incorporating multiple layup sequences and thickness configurations within a single laminate to reflect realistic structural design configurations encountered in composite manufacturing. In all simulation results, the optimized compensation reduced nodal displacements by more than 93%, resulting in significant improvements in both local and global geometric accuracy. The proposed methodology comprehensively considers complex cure-induced physical behaviors, enabling accurate, robust, and highly efficient nodal-level deformation compensation and providing practical applicability across a wide range of composite structures, including both unidirectional and textile-reinforced laminates.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104446"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001350","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel physics-based geometric compensation methodology to mitigate process-induced deformation (PID) in hybrid unidirectional/woven CFRP composite structures. Reverse deformation to compensate PID is induced by inverting the layup sequence, while the deformation magnitude is precisely adjusted using scaling factors, which are determined via fitting-based optimization and applied to thermochemical strain coefficients. The methodology is implemented through thermo-mechanical simulations using the finite element method, integrating cure-dependent material behavior, effective material properties, and thermal and chemical strains to accurately predict PID. The capability of the proposed methodology is demonstrated through extensive simulations of hybrid CFRP laminates, specifically incorporating multiple layup sequences and thickness configurations within a single laminate to reflect realistic structural design configurations encountered in composite manufacturing. In all simulation results, the optimized compensation reduced nodal displacements by more than 93%, resulting in significant improvements in both local and global geometric accuracy. The proposed methodology comprehensively considers complex cure-induced physical behaviors, enabling accurate, robust, and highly efficient nodal-level deformation compensation and providing practical applicability across a wide range of composite structures, including both unidirectional and textile-reinforced laminates.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.