CropARNet: A deep learning framework for crop genomic prediction with attention and residual modules

Shuchang Zhou , Ke Cheng , Lei Lv , Jiamei Jiang , Shusheng Zhou , Yanda Zhou , Zhitao Xu , Qixiang Huang , Huankun Yang , Lingxi Chen , Yuzhe Xu , Zhangliang Yao , Ting Zhao
{"title":"CropARNet: A deep learning framework for crop genomic prediction with attention and residual modules","authors":"Shuchang Zhou ,&nbsp;Ke Cheng ,&nbsp;Lei Lv ,&nbsp;Jiamei Jiang ,&nbsp;Shusheng Zhou ,&nbsp;Yanda Zhou ,&nbsp;Zhitao Xu ,&nbsp;Qixiang Huang ,&nbsp;Huankun Yang ,&nbsp;Lingxi Chen ,&nbsp;Yuzhe Xu ,&nbsp;Zhangliang Yao ,&nbsp;Ting Zhao","doi":"10.1016/j.cropd.2025.100118","DOIUrl":null,"url":null,"abstract":"<div><div>Genomic selection (GS) utilizes genome-wide markers to predict complex traits, thereby enhancing crop breeding efficiency. Recently, deep learning has emerged as a promising approach to improve prediction accuracy in GS. This study introduces CropARNet, a novel deep learning framework for GS that integrates a self-attention mechanism with a deep residual network. We systematically evaluated CropARNet's performance on 53 key agronomic traits across four major crops: rice, maize, cotton, and millet. When benchmarked against established models including GBLUP, DNNGP, XGBoost, and CropFormer, CropARNet ranked first in prediction accuracy for 29 of the 53 traits and consistently placed among the top performers for the remainder. Furthermore, CropARNet can successfully predict phenotypes using transcriptomic data. In summary, CropARNet represents a robust, accurate, and powerful tool for advancing the molecular breeding of complex traits in crops. The CropARNet software and illustrative examples are publicly available for download at: <span><span>https://github.com/Zhoushuchang-lab/CropARNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"4 4","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899425000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic selection (GS) utilizes genome-wide markers to predict complex traits, thereby enhancing crop breeding efficiency. Recently, deep learning has emerged as a promising approach to improve prediction accuracy in GS. This study introduces CropARNet, a novel deep learning framework for GS that integrates a self-attention mechanism with a deep residual network. We systematically evaluated CropARNet's performance on 53 key agronomic traits across four major crops: rice, maize, cotton, and millet. When benchmarked against established models including GBLUP, DNNGP, XGBoost, and CropFormer, CropARNet ranked first in prediction accuracy for 29 of the 53 traits and consistently placed among the top performers for the remainder. Furthermore, CropARNet can successfully predict phenotypes using transcriptomic data. In summary, CropARNet represents a robust, accurate, and powerful tool for advancing the molecular breeding of complex traits in crops. The CropARNet software and illustrative examples are publicly available for download at: https://github.com/Zhoushuchang-lab/CropARNet.
CropARNet:一个基于关注和残差模块的作物基因组预测深度学习框架
基因组选择(GS)利用全基因组标记预测复杂性状,从而提高作物育种效率。最近,深度学习已经成为一种有希望提高GS预测精度的方法。本研究介绍了一种新的GS深度学习框架CropARNet,它将自注意机制与深度残差网络集成在一起。我们系统地评估了CropARNet在水稻、玉米、棉花和小米四种主要作物的53个关键农艺性状上的表现。当与已建立的模型(包括GBLUP, DNNGP, XGBoost和CropFormer)进行基准测试时,CropARNet在53个性状中的29个性状的预测准确性上排名第一,并且在其余性状中始终名列前茅。此外,CropARNet可以利用转录组学数据成功预测表型。总之,CropARNet代表了一个强大、准确和强大的工具,用于推进作物复杂性状的分子育种。CropARNet软件和说明性示例可在以下网址公开下载:https://github.com/Zhoushuchang-lab/CropARNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信