Ming Peng , Haipeng Yu , Jianping Huang , Yu Ren , Li Fu
{"title":"Exacerbated global surface water stress under climate change","authors":"Ming Peng , Haipeng Yu , Jianping Huang , Yu Ren , Li Fu","doi":"10.1016/j.geosus.2025.100361","DOIUrl":null,"url":null,"abstract":"<div><div>Water stress is expected to intensify due to escalating atmospheric and surface dryness under global warming. Despite extensive research indicate that intensified dryness exacerbates water constraints on ecosystems, the dynamics and underlying mechanisms of surface water stress (SWS) under climate change remain poorly understood. In this study, we use annual evaporative stress as the surface water stress index (WSI) and provide a comprehensive analysis of historical and projected global terrestrial SWS, covering its characteristic changes, driving factors, and impacts on vegetation. Our results show a significant declining trend in WSI during 1982–2014 (-0.0033/decade, <em>p</em> < 0.01), indicating the enhancement of SWS concurrent with a rapid expansion of water stress intensified areas at a rate of 1.85 %/decade (<em>p</em> < 0.01). Using the Budyko-Penman budget framework, we found that the intensification of SWS was primarily driven by an increase in vapor pressure deficit (VPD) and a decrease in precipitation. Furthermore, the intensification of SWS contributed to a decline in vegetation growth, with the extent of areas experiencing increased vegetation water deficit expanding rapidly at a rate of 1.38 % per decade (<em>p</em> < 0.01). In the future, SWS is projected to escalate, with the proportion of areas experiencing intensified SWS increasing from 6.3 % to 24.3 % by the end of the century under the SSP5–8.5. Our study provides a comprehensive analysis of the drivers of SWS under climate change and its impacts on ecosystems, offering valuable scientific insights for the effective management of water resources.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 6","pages":"Article 100361"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683925001002","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water stress is expected to intensify due to escalating atmospheric and surface dryness under global warming. Despite extensive research indicate that intensified dryness exacerbates water constraints on ecosystems, the dynamics and underlying mechanisms of surface water stress (SWS) under climate change remain poorly understood. In this study, we use annual evaporative stress as the surface water stress index (WSI) and provide a comprehensive analysis of historical and projected global terrestrial SWS, covering its characteristic changes, driving factors, and impacts on vegetation. Our results show a significant declining trend in WSI during 1982–2014 (-0.0033/decade, p < 0.01), indicating the enhancement of SWS concurrent with a rapid expansion of water stress intensified areas at a rate of 1.85 %/decade (p < 0.01). Using the Budyko-Penman budget framework, we found that the intensification of SWS was primarily driven by an increase in vapor pressure deficit (VPD) and a decrease in precipitation. Furthermore, the intensification of SWS contributed to a decline in vegetation growth, with the extent of areas experiencing increased vegetation water deficit expanding rapidly at a rate of 1.38 % per decade (p < 0.01). In the future, SWS is projected to escalate, with the proportion of areas experiencing intensified SWS increasing from 6.3 % to 24.3 % by the end of the century under the SSP5–8.5. Our study provides a comprehensive analysis of the drivers of SWS under climate change and its impacts on ecosystems, offering valuable scientific insights for the effective management of water resources.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.