Examining optical, elastic, electronic, and structural properties of NaZrX3 (X = Cl and F) perovskite compounds: DFT study

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Izzat Khan , Amir Ullah , Wafa Mohammed Almalki , M.D. Alshahrani , Salma Alshehri , Vineet Tirth , Nasir Rahman , Mudasser Husain , Mohammad Sohail , Mubashir Hussain , Muhammad Yaqoob Khan
{"title":"Examining optical, elastic, electronic, and structural properties of NaZrX3 (X = Cl and F) perovskite compounds: DFT study","authors":"Izzat Khan ,&nbsp;Amir Ullah ,&nbsp;Wafa Mohammed Almalki ,&nbsp;M.D. Alshahrani ,&nbsp;Salma Alshehri ,&nbsp;Vineet Tirth ,&nbsp;Nasir Rahman ,&nbsp;Mudasser Husain ,&nbsp;Mohammad Sohail ,&nbsp;Mubashir Hussain ,&nbsp;Muhammad Yaqoob Khan","doi":"10.1016/j.cocom.2025.e01135","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the structural, elastic, electronic, and optical properties of NaZrX<sub>3</sub> (X = Cl and F) perovskite compounds using density functional theory (DFT) with the TB-mBJ approximation. Both compounds crystallize in a cubic lattice (space group Pm3̅m) and fulfill the Born stability criteria, with elastic constants confirming their ductile nature (B/G &gt; 1.75) and anisotropic elastic response (A ≠ 1). The absence of imaginary frequencies in the phonon dispersion curves confirms the thermodynamic stability of both materials. Electronic structure analysis reveals metallic behavior arising from the overlap of valence and conduction bands. In both NaZrF<sub>3</sub> and NaZrCl<sub>3</sub>, the metallic character is dominated by Zr d-orbitals, while spin–orbit coupling slightly modifies the band dispersion without opening a bandgap. Optical properties, evaluated over 1–10 eV, show high conductivity, significant absorption, and strong reflectivity in the low-energy range, indicating potential for ultraviolet and optoelectronic applications. The substitution of Cl with F enhances the bulk modulus, increases the pressure derivative, reduces the lattice constant, and lowers the ground-state energy. These findings establish NaZrX<sub>3</sub> as promising materials for next-generation electronic and optical devices.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01135"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the structural, elastic, electronic, and optical properties of NaZrX3 (X = Cl and F) perovskite compounds using density functional theory (DFT) with the TB-mBJ approximation. Both compounds crystallize in a cubic lattice (space group Pm3̅m) and fulfill the Born stability criteria, with elastic constants confirming their ductile nature (B/G > 1.75) and anisotropic elastic response (A ≠ 1). The absence of imaginary frequencies in the phonon dispersion curves confirms the thermodynamic stability of both materials. Electronic structure analysis reveals metallic behavior arising from the overlap of valence and conduction bands. In both NaZrF3 and NaZrCl3, the metallic character is dominated by Zr d-orbitals, while spin–orbit coupling slightly modifies the band dispersion without opening a bandgap. Optical properties, evaluated over 1–10 eV, show high conductivity, significant absorption, and strong reflectivity in the low-energy range, indicating potential for ultraviolet and optoelectronic applications. The substitution of Cl with F enhances the bulk modulus, increases the pressure derivative, reduces the lattice constant, and lowers the ground-state energy. These findings establish NaZrX3 as promising materials for next-generation electronic and optical devices.
检测NaZrX3 (X = Cl和F)钙钛矿化合物的光学、弹性、电子和结构性质:DFT研究
本研究利用TB-mBJ近似的密度泛函理论(DFT)探讨了NaZrX3 (X = Cl和F)钙钛矿化合物的结构、弹性、电子和光学性质。两种化合物均在立方晶格(空间群Pm3′m)中结晶,满足Born稳定性判据,弹性常数证实了它们的延性(B/G > 1.75)和各向异性弹性响应(a≠1)。声子色散曲线中没有虚频率证实了这两种材料的热力学稳定性。电子结构分析揭示了由价带和导带重叠引起的金属行为。在NaZrF3和NaZrCl3中,金属性质均以Zr d轨道为主,而自旋轨道耦合在不打开带隙的情况下轻微地改变了能带色散。在1-10 eV范围内,其光学特性显示出高导电性、显著的吸收和低能量范围内的强反射率,表明其在紫外和光电子应用方面的潜力。用F取代Cl提高了体积模量,增加了压力导数,降低了晶格常数,降低了基态能量。这些发现使NaZrX3成为下一代电子和光学器件的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信