Hang J. Kim , Steven N. MacEachern , Young Min Kim , Yoonsuh Jung
{"title":"Kernel density estimation with a Markov chain Monte Carlo sample","authors":"Hang J. Kim , Steven N. MacEachern , Young Min Kim , Yoonsuh Jung","doi":"10.1016/j.csda.2025.108271","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian inference relies on the posterior distribution, which is often estimated with a Markov chain Monte Carlo sampler. The sampler produces a dependent stream of variates from the limiting distribution of the Markov chain, the posterior distribution. When one wishes to display the estimated posterior density, a natural choice is the histogram. However, abundant literature has shown that the kernel density estimator is more accurate than the histogram in terms of mean integrated squared error for an i.i.d. sample. With this as motivation, a kernel density estimation method is proposed that is appropriate for the dependence in the Markov chain Monte Carlo output. To account for the dependence, the cross-validation criterion is modified to select the bandwidth in standard kernel density estimation approaches. A data-driven adjustment to the biased cross-validation method is suggested with introducing the integrated autocorrelation time of the kernel. The convergence of the modified bandwidth to the optimal bandwidth is shown by adapting theorems from the time series literature. Simulation studies show that the proposed method finds the bandwidth close to the optimal value, while standard methods lead to smaller bandwidths under Markov chain samples and hence to undersmoothed density estimates. A study with real data shows that the proposed method has a considerably smaller integrated mean squared error than standard methods. The R package <span>KDEmcmc</span> to implement the suggested algorithm is available on the Comprehensive R Archive Network.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"214 ","pages":"Article 108271"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian inference relies on the posterior distribution, which is often estimated with a Markov chain Monte Carlo sampler. The sampler produces a dependent stream of variates from the limiting distribution of the Markov chain, the posterior distribution. When one wishes to display the estimated posterior density, a natural choice is the histogram. However, abundant literature has shown that the kernel density estimator is more accurate than the histogram in terms of mean integrated squared error for an i.i.d. sample. With this as motivation, a kernel density estimation method is proposed that is appropriate for the dependence in the Markov chain Monte Carlo output. To account for the dependence, the cross-validation criterion is modified to select the bandwidth in standard kernel density estimation approaches. A data-driven adjustment to the biased cross-validation method is suggested with introducing the integrated autocorrelation time of the kernel. The convergence of the modified bandwidth to the optimal bandwidth is shown by adapting theorems from the time series literature. Simulation studies show that the proposed method finds the bandwidth close to the optimal value, while standard methods lead to smaller bandwidths under Markov chain samples and hence to undersmoothed density estimates. A study with real data shows that the proposed method has a considerably smaller integrated mean squared error than standard methods. The R package KDEmcmc to implement the suggested algorithm is available on the Comprehensive R Archive Network.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]