Generalised spinr structures on homogeneous spaces

IF 0.7 4区 数学 Q3 MATHEMATICS
Diego Artacho, Marie-Amélie Lawn
{"title":"Generalised spinr structures on homogeneous spaces","authors":"Diego Artacho,&nbsp;Marie-Amélie Lawn","doi":"10.1016/j.difgeo.2025.102291","DOIUrl":null,"url":null,"abstract":"<div><div>Spinorial methods have proven to be a powerful tool to study geometric properties of spin manifolds. Our aim is to continue the spinorial study of manifolds that are not necessarily spin. We introduce and study the notion of <em>G</em>-invariance of spin<sup><em>r</em></sup> structures on a manifold <em>M</em> equipped with an action of a Lie group <em>G</em>. For the case when <em>M</em> is a homogeneous <em>G</em>-space, we prove a classification result of these invariant structures in terms of the isotropy representation. As an example, we study the invariant spin<sup><em>r</em></sup> structures for all the homogeneous realisations of the spheres.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102291"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452500066X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spinorial methods have proven to be a powerful tool to study geometric properties of spin manifolds. Our aim is to continue the spinorial study of manifolds that are not necessarily spin. We introduce and study the notion of G-invariance of spinr structures on a manifold M equipped with an action of a Lie group G. For the case when M is a homogeneous G-space, we prove a classification result of these invariant structures in terms of the isotropy representation. As an example, we study the invariant spinr structures for all the homogeneous realisations of the spheres.
齐次空间上的广义旋旋结构
旋量方法已被证明是研究自旋流形几何性质的有力工具。我们的目标是继续对不一定是自旋的流形进行旋旋研究。引入并研究了具有李群g作用的流形M上自旋结构的g不变性的概念,当M是齐次g空间时,用各向同性表示证明了这些不变性结构的分类结果。作为一个例子,我们研究了所有球面齐次实现的不变自旋结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信