{"title":"Redundant contextual feature suppression for pedestrian detection in dense scenes","authors":"Jun Wang, Lei Wan, Xin Zhang, Xiaotian Cao","doi":"10.1016/j.image.2025.117403","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian detection is one of the important branches of object detection, with a wide range of applications in autonomous driving, intelligent video surveillance, and passenger flow statistics. However, these scenes exhibit high pedestrian density, severe occlusion, and complex redundant contextual information, leading to issues such as low detection accuracy and a high number of false positives in current general object detectors when applied in dense pedestrian scenes. In this paper, we propose an improved Context Suppressed R-CNN method for pedestrian detection in dense scenes, based on the Sparse R-CNN. Firstly, to further enhance the network’s ability to extract deep features in dense scenes, we introduce the CoT-FPN backbone by combining the FPN network with the Contextual Transformer Block. This block replaces the <span><math><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></math></span> convolution in the ResNet backbone. Secondly, addressing the issue that redundant contextual features of instance objects can mislead the localization and recognition of object detection tasks in dense scenes, we propose a Redundant Contextual Feature Suppression Module (RCFSM). This module, based on the convolutional block attention mechanism, aims to suppress redundant contextual information in instance features, thereby improving the network’s detection performance in dense scenes. The test results on the CrowdHuman dataset show that, compared with the Sparse R-CNN algorithm, the proposed algorithm improves the Average Precision (AP) by 1.1% and the Jaccard index by 1.2%, while also reducing the number of model parameters. Code is available at <span><span>https://github.com/davidsmithwj/CS-CS-RCNN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"139 ","pages":"Article 117403"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525001493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian detection is one of the important branches of object detection, with a wide range of applications in autonomous driving, intelligent video surveillance, and passenger flow statistics. However, these scenes exhibit high pedestrian density, severe occlusion, and complex redundant contextual information, leading to issues such as low detection accuracy and a high number of false positives in current general object detectors when applied in dense pedestrian scenes. In this paper, we propose an improved Context Suppressed R-CNN method for pedestrian detection in dense scenes, based on the Sparse R-CNN. Firstly, to further enhance the network’s ability to extract deep features in dense scenes, we introduce the CoT-FPN backbone by combining the FPN network with the Contextual Transformer Block. This block replaces the convolution in the ResNet backbone. Secondly, addressing the issue that redundant contextual features of instance objects can mislead the localization and recognition of object detection tasks in dense scenes, we propose a Redundant Contextual Feature Suppression Module (RCFSM). This module, based on the convolutional block attention mechanism, aims to suppress redundant contextual information in instance features, thereby improving the network’s detection performance in dense scenes. The test results on the CrowdHuman dataset show that, compared with the Sparse R-CNN algorithm, the proposed algorithm improves the Average Precision (AP) by 1.1% and the Jaccard index by 1.2%, while also reducing the number of model parameters. Code is available at https://github.com/davidsmithwj/CS-CS-RCNN.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.