PointPPE: A precise recognition method for complex machining features based on point cloud analysis network with polynomial positional encoding

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Guiyu Jiang , Bin Xue , Zhongbin Xu , Xiaodong Ruan , Pengcheng Nie , Xiang Zhou , Zhuoxiang Zhao
{"title":"PointPPE: A precise recognition method for complex machining features based on point cloud analysis network with polynomial positional encoding","authors":"Guiyu Jiang ,&nbsp;Bin Xue ,&nbsp;Zhongbin Xu ,&nbsp;Xiaodong Ruan ,&nbsp;Pengcheng Nie ,&nbsp;Xiang Zhou ,&nbsp;Zhuoxiang Zhao","doi":"10.1016/j.displa.2025.103214","DOIUrl":null,"url":null,"abstract":"<div><div>Machining feature recognition is a pivotal step of computer-aided manufacturing, providing the analytical foundation for subsequent machining processes. However, the insufficient utilization of point cloud positional information and redundant information in hierarchical network learning hinder the precise recognition capability of complex features. To address these problems, this work introduces an improved machining feature recognition method, termed PointPPE. Given the precision parts’ feature complexity and similarity, the polynomial position encoding module is designed to learn geometric structures efficiently to encode point cloud position information. A channel attention context fusion module is developed to enhance local feature analysis through channel feature weights assignment and contextual information integration. The results demonstrate that PointPPE exhibits precise recognition capability on constructed precision mold part point cloud datasets, with an instance mean Intersection over Union (IoU) of 90.57%, and shows great generalization on the ShapeNetPart dataset, with class and instance mean IoUs reaching 83.9% and 86.0%, respectively, manifesting superior prospects for complex feature recognition in advanced manufacturing.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103214"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Machining feature recognition is a pivotal step of computer-aided manufacturing, providing the analytical foundation for subsequent machining processes. However, the insufficient utilization of point cloud positional information and redundant information in hierarchical network learning hinder the precise recognition capability of complex features. To address these problems, this work introduces an improved machining feature recognition method, termed PointPPE. Given the precision parts’ feature complexity and similarity, the polynomial position encoding module is designed to learn geometric structures efficiently to encode point cloud position information. A channel attention context fusion module is developed to enhance local feature analysis through channel feature weights assignment and contextual information integration. The results demonstrate that PointPPE exhibits precise recognition capability on constructed precision mold part point cloud datasets, with an instance mean Intersection over Union (IoU) of 90.57%, and shows great generalization on the ShapeNetPart dataset, with class and instance mean IoUs reaching 83.9% and 86.0%, respectively, manifesting superior prospects for complex feature recognition in advanced manufacturing.

Abstract Image

PointPPE:一种基于多项式位置编码的点云分析网络的复杂加工特征精确识别方法
加工特征识别是计算机辅助制造的关键步骤,为后续加工过程提供分析基础。然而,层次网络学习中对点云位置信息和冗余信息的利用不足,影响了复杂特征的精确识别能力。为了解决这些问题,本工作引入了一种改进的加工特征识别方法,称为PointPPE。针对精密零件特征的复杂性和相似性,设计多项式位置编码模块,高效学习几何结构,对点云位置信息进行编码。开发了信道关注上下文融合模块,通过信道特征权值分配和上下文信息集成,增强了局部特征分析能力。结果表明,PointPPE在已构建的精密模具零件点云数据集上具有较好的识别能力,实例平均IoU (Intersection over Union)达到90.57%;在ShapeNetPart数据集上具有较好的泛化能力,类和实例平均IoU分别达到83.9%和86.0%,在先进制造领域的复杂特征识别方面具有较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信