AACRNet: Ambiguity-aware change refinement network for remote sensing images change detection

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junwei Li, Rihai Lai, Shuaiao Li, Peng Yu, Xuefeng Ma, Hongtai Yao
{"title":"AACRNet: Ambiguity-aware change refinement network for remote sensing images change detection","authors":"Junwei Li,&nbsp;Rihai Lai,&nbsp;Shuaiao Li,&nbsp;Peng Yu,&nbsp;Xuefeng Ma,&nbsp;Hongtai Yao","doi":"10.1016/j.dsp.2025.105594","DOIUrl":null,"url":null,"abstract":"<div><div>Change detection is a fundamental task in remote sensing image analysis. Despite the promising results achieved by recent deep learning-based methods, existing approaches still struggle with ambiguous cases, particularly in scenarios with high visual similarity to complex background noise. Such visual ambiguity often results in semantic confusion and erroneous predictions. However, few methods have explicitly addressed this challenge. In this paper, we propose an ambiguity-aware change refinement network (AACRNet) to tackle this issue. Specifically, a Siamese backbone network is utilized to extract multi-level feature representations from bitemporal images. At each hierarchical level, a temporal difference fusion module (TDFM) is introduced to dynamically establish spatiotemporal relationships, capture global change information, and generate difference features. To mitigate semantic discrepancies between adjacent hierarchical difference features and efficiently locate key change regions, we incorporate a semantic aggregation module (SAM) to integrate global semantic information. Furthermore, we propose a focusing refinement module (FRM) to explicitly model ambiguous regions, introducing a novel strategy that exploits global semantic information to extract and distinguish interference signals within these ambiguous regions. By progressively refining cross-layer features, the FRM enhances semantic consistency and reduces false predictions in such areas. Extensive experiments on the WHU-CD, LEVIR-CD, and SYSU-CD datasets indicate that AACRNet outperforms other state-of-the-art (SOTA) change detection methods, achieving superior accuracy and robustness.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105594"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425006165","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Change detection is a fundamental task in remote sensing image analysis. Despite the promising results achieved by recent deep learning-based methods, existing approaches still struggle with ambiguous cases, particularly in scenarios with high visual similarity to complex background noise. Such visual ambiguity often results in semantic confusion and erroneous predictions. However, few methods have explicitly addressed this challenge. In this paper, we propose an ambiguity-aware change refinement network (AACRNet) to tackle this issue. Specifically, a Siamese backbone network is utilized to extract multi-level feature representations from bitemporal images. At each hierarchical level, a temporal difference fusion module (TDFM) is introduced to dynamically establish spatiotemporal relationships, capture global change information, and generate difference features. To mitigate semantic discrepancies between adjacent hierarchical difference features and efficiently locate key change regions, we incorporate a semantic aggregation module (SAM) to integrate global semantic information. Furthermore, we propose a focusing refinement module (FRM) to explicitly model ambiguous regions, introducing a novel strategy that exploits global semantic information to extract and distinguish interference signals within these ambiguous regions. By progressively refining cross-layer features, the FRM enhances semantic consistency and reduces false predictions in such areas. Extensive experiments on the WHU-CD, LEVIR-CD, and SYSU-CD datasets indicate that AACRNet outperforms other state-of-the-art (SOTA) change detection methods, achieving superior accuracy and robustness.
基于模糊感知的遥感图像变化细化网络
变化检测是遥感图像分析中的一项基本任务。尽管最近基于深度学习的方法取得了有希望的结果,但现有的方法仍然难以处理模棱两可的情况,特别是在与复杂背景噪声具有高度视觉相似性的场景中。这种视觉上的歧义常常导致语义混淆和错误的预测。然而,很少有方法明确地解决了这一挑战。在本文中,我们提出了一个模糊感知变化细化网络(AACRNet)来解决这个问题。具体来说,利用暹罗骨干网从双时间图像中提取多层次特征表示。在每个层次上,引入时间差异融合模块(TDFM),动态建立时空关系,捕获全局变化信息,生成差异特征。为了减轻相邻层次差异特征之间的语义差异,有效定位关键变化区域,我们引入了语义聚合模块(SAM)来整合全局语义信息。此外,我们提出了一个聚焦细化模块(FRM)来明确地建模模糊区域,引入了一种利用全局语义信息提取和区分这些模糊区域内干扰信号的新策略。通过逐步细化跨层特征,FRM增强了语义一致性,减少了这些领域的错误预测。在WHU-CD、LEVIR-CD和SYSU-CD数据集上进行的大量实验表明,AACRNet优于其他最先进的(SOTA)变化检测方法,具有更高的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信