Calculation of approximate heart rate variability indicators based on low-resolution heart rate data provided by widely used commercially available wearable devices
{"title":"Calculation of approximate heart rate variability indicators based on low-resolution heart rate data provided by widely used commercially available wearable devices","authors":"Xue Li , Goh Onoguchi , Hiroshi Komatsu , Chiaki Ono , Noriko Warita , Zhiqian Yu , Atsuko Nagaoka , Sho Horikoshi , Kenji Iwabuchi , Kohei Fuji , Mizuki Hino , Yuta Takahashi , Hisashi Ohseto , Natsuko Kobayashi , Saya Kikuchi , Yasuto Kunii , Taku Obara , Shinichi Kuriyama , Noriyasu Homma , Parashkev Nachev , Hiroaki Tomita","doi":"10.1016/j.bspc.2025.108579","DOIUrl":null,"url":null,"abstract":"<div><div>Heart rate variability (HRV) assessment using wearable technology is a valuable tool for monitoring physical and emotional health. However, many widely used wearable devices, such as those from Apple and Fitbit, do not provide high-resolution heart rate (HR) data (i.e., data for every heartbeat) but instead report low-resolution data, typically as average HR values over fixed intervals (e.g., every 5 s). In this study, we developed algorithms to estimate HRV indicators from such low-resolution HR data and evaluated their reliability and accuracy. High-resolution HR data were collected over one week from 154 pregnant women (aged 25–44 years, 23–32 weeks gestation) using a chest-worn portable HR monitor. The average HR over each 5-second interval was calculated to match Fitbit’s data format. HRV indicators were computed from the reconstructed low-resolution data and compared with those from the original high-resolution data using two one-sided tests of equivalence (TOST), correlation analysis, and principal component analysis (PCA). Additional validation using Bland–Altman plots and bootstrap-derived confidence intervals assessed estimation stability. All analyses indicated high similarity between estimated and reference HRV values. TOST confirmed statistical equivalence (p < 0.05) with negligible effect sizes (Cohen’s d < 0.1). Correlation coefficients ranged from 0.714 to 0.921, and PCA yielded a similarity index of 0.95. The algorithms demonstrated robustness through equivalence testing, distributional similarity, error stability, and cross-cohort generalizability. Further validation using both high- and low-resolution HR datasets from publicly available databases supported these findings. These results suggest that HRV indicators derived from low-resolution HR data may be sufficiently accurate for clinical and everyday health monitoring.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"112 ","pages":"Article 108579"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425010900","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heart rate variability (HRV) assessment using wearable technology is a valuable tool for monitoring physical and emotional health. However, many widely used wearable devices, such as those from Apple and Fitbit, do not provide high-resolution heart rate (HR) data (i.e., data for every heartbeat) but instead report low-resolution data, typically as average HR values over fixed intervals (e.g., every 5 s). In this study, we developed algorithms to estimate HRV indicators from such low-resolution HR data and evaluated their reliability and accuracy. High-resolution HR data were collected over one week from 154 pregnant women (aged 25–44 years, 23–32 weeks gestation) using a chest-worn portable HR monitor. The average HR over each 5-second interval was calculated to match Fitbit’s data format. HRV indicators were computed from the reconstructed low-resolution data and compared with those from the original high-resolution data using two one-sided tests of equivalence (TOST), correlation analysis, and principal component analysis (PCA). Additional validation using Bland–Altman plots and bootstrap-derived confidence intervals assessed estimation stability. All analyses indicated high similarity between estimated and reference HRV values. TOST confirmed statistical equivalence (p < 0.05) with negligible effect sizes (Cohen’s d < 0.1). Correlation coefficients ranged from 0.714 to 0.921, and PCA yielded a similarity index of 0.95. The algorithms demonstrated robustness through equivalence testing, distributional similarity, error stability, and cross-cohort generalizability. Further validation using both high- and low-resolution HR datasets from publicly available databases supported these findings. These results suggest that HRV indicators derived from low-resolution HR data may be sufficiently accurate for clinical and everyday health monitoring.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.