DMID-ESD: A Benchmark Darkfield Microscopy Image Dataset for Erythrocytes and Spirochaete Detection and Classification

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Guotao Lu , Zizhen Fan , Minghe Gao , Jing Chen , Qingtao Meng , Hechen Yang , Hongzan Sun , Tao Jiang , Yudong Yao , Marcin Grzegorzek , Chen Li
{"title":"DMID-ESD: A Benchmark Darkfield Microscopy Image Dataset for Erythrocytes and Spirochaete Detection and Classification","authors":"Guotao Lu ,&nbsp;Zizhen Fan ,&nbsp;Minghe Gao ,&nbsp;Jing Chen ,&nbsp;Qingtao Meng ,&nbsp;Hechen Yang ,&nbsp;Hongzan Sun ,&nbsp;Tao Jiang ,&nbsp;Yudong Yao ,&nbsp;Marcin Grzegorzek ,&nbsp;Chen Li","doi":"10.1016/j.bspc.2025.108595","DOIUrl":null,"url":null,"abstract":"<div><div>Since the analysis of erythrocytes and spirochaetes is highly relevant to human health, their automated detection is of significant importance in both medical and computer vision research. However, publicly available datasets in this domain remain scarce. To address this gap, we present the Darkfield Microscopy Image Dataset for Erythrocytes and Spirochaete Detection (DMID-ESD), which consists of 11,794 fully annotated images with labels containing categorical and localization information. We perform comprehensive benchmarking experiments on DMID-ESD to evaluate its utility in tasks such as image classification, object detection, and feature extraction. The results demonstrate that the dataset serves as an effective benchmark for method evaluation. The DMID-ESD dataset is freely available for non-commercial use at: <span><span>https://figshare.com/articles/dataset/DMID-ESD_zip/22179311</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"112 ","pages":"Article 108595"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425011061","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Since the analysis of erythrocytes and spirochaetes is highly relevant to human health, their automated detection is of significant importance in both medical and computer vision research. However, publicly available datasets in this domain remain scarce. To address this gap, we present the Darkfield Microscopy Image Dataset for Erythrocytes and Spirochaete Detection (DMID-ESD), which consists of 11,794 fully annotated images with labels containing categorical and localization information. We perform comprehensive benchmarking experiments on DMID-ESD to evaluate its utility in tasks such as image classification, object detection, and feature extraction. The results demonstrate that the dataset serves as an effective benchmark for method evaluation. The DMID-ESD dataset is freely available for non-commercial use at: https://figshare.com/articles/dataset/DMID-ESD_zip/22179311.
DMID-ESD:用于红细胞和螺旋体检测和分类的基准暗场显微镜图像数据集
由于红细胞和螺旋体的分析与人类健康高度相关,因此它们的自动检测在医学和计算机视觉研究中都具有重要意义。然而,在这一领域公开可用的数据集仍然很少。为了解决这一问题,我们提出了用于红细胞和螺旋菌检测的暗场显微镜图像数据集(DMID-ESD),该数据集由11,794张完全注释的图像组成,其标签包含分类和定位信息。我们对DMID-ESD进行了全面的基准实验,以评估其在图像分类,目标检测和特征提取等任务中的实用性。结果表明,该数据集可作为方法评价的有效基准。DMID-ESD数据集可免费用于非商业用途:https://figshare.com/articles/dataset/DMID-ESD_zip/22179311。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信