Wondertopes

IF 1.5 1区 数学 Q1 MATHEMATICS
Sarah Brauner , Christopher Eur , Elizabeth Pratt , Raluca Vlad
{"title":"Wondertopes","authors":"Sarah Brauner ,&nbsp;Christopher Eur ,&nbsp;Elizabeth Pratt ,&nbsp;Raluca Vlad","doi":"10.1016/j.aim.2025.110516","DOIUrl":null,"url":null,"abstract":"<div><div>Positive geometries were introduced by Arkani-Hamed–Bai–Lam in their study of scattering amplitudes in theoretical physics. We show that a positive geometry from a polytope admits a log resolution of singularities to another positive geometry. Our result states that the regions in a wonderful compactification of a hyperplane arrangement complement, which we call <em>wondertopes</em>, are positive geometries. A familiar wondertope is the curvy associahedron which tiles the moduli space of <em>n</em>-pointed stable rational curves <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>. Thus our work generalizes the known positive geometry <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110516"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004141","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Positive geometries were introduced by Arkani-Hamed–Bai–Lam in their study of scattering amplitudes in theoretical physics. We show that a positive geometry from a polytope admits a log resolution of singularities to another positive geometry. Our result states that the regions in a wonderful compactification of a hyperplane arrangement complement, which we call wondertopes, are positive geometries. A familiar wondertope is the curvy associahedron which tiles the moduli space of n-pointed stable rational curves M0,n. Thus our work generalizes the known positive geometry M0,n.
Wondertopes
正几何是Arkani-Hamed-Bai-Lam在理论物理散射振幅的研究中引入的。我们证明了一个多面体的正几何对另一个正几何的奇点有对数分解。我们的结果表明,在超平面排列补的奇妙紧化中,我们称之为奇妙型的区域是正几何。一个熟悉的奇妙形状是弯曲的结合面体,它覆盖了n点稳定有理曲线M的模空间。因此,我们的工作推广了已知的正几何M, 0,n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信