On least energy solutions for a nonlinear Schrödinger system with K-wise interaction

IF 1.3 2区 数学 Q1 MATHEMATICS
Lorenzo Giaretto, Nicola Soave
{"title":"On least energy solutions for a nonlinear Schrödinger system with K-wise interaction","authors":"Lorenzo Giaretto,&nbsp;Nicola Soave","doi":"10.1016/j.na.2025.113938","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system <span><span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>K</mi><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><munder><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>≠</mo><mi>i</mi></mrow></munder><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced><mspace></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>K</mi><mo>,</mo></mrow></math></span></span></span>characterized by <span><math><mi>K</mi></math></span>-wise interaction (namely the interaction term involves the product of all the components). We consider both attractive (<span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>) and repulsive cases (<span><math><mrow><mi>β</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>), and we give sufficient conditions on <span><math><mi>β</mi></math></span> in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition <span><math><mrow><mi>β</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span>, showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113938"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001907","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system Δui+λiui=μi|ui|Kq2ui+β|ui|q2uiji|uj|qinRduiH1(Rd),i=1,,K,characterized by K-wise interaction (namely the interaction term involves the product of all the components). We consider both attractive (β>0) and repulsive cases (β<0), and we give sufficient conditions on β in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition β, showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.
具有K-wise相互作用的非线性Schrödinger系统的最小能量解
本文建立了弱耦合系统- Δui+λiui=μi|ui|Kq−2ui+β|ui|q−2ui∏j≠i|uj|qinRdui∈H1(Rd),i=1,…,K的最小能量解的存在性和性质,其特征为K-wise相互作用(即相互作用项涉及所有分量的乘积)。我们考虑了吸引(β>0)和排斥(β<0)两种情况,并给出了β的充分条件,以便在径向约束下得到能量最小的完全非平凡解。我们还研究了在强竞争β→−∞极限下最小能量完全非平凡径向解的渐近行为,显示出与两两相互作用模型中出现的部分偏析现象有很大不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信