Structure-preserving and thermodynamically consistent finite element discretization for visco-resistive MHD with thermoelectric effect

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Evan S. Gawlik , François Gay-Balmaz , Bastien Manach-Pérennou
{"title":"Structure-preserving and thermodynamically consistent finite element discretization for visco-resistive MHD with thermoelectric effect","authors":"Evan S. Gawlik ,&nbsp;François Gay-Balmaz ,&nbsp;Bastien Manach-Pérennou","doi":"10.1016/j.jcp.2025.114336","DOIUrl":null,"url":null,"abstract":"<div><div>We present a structure-preserving and thermodynamically consistent numerical scheme for classical magnetohydrodynamics, incorporating viscosity, magnetic resistivity, heat transfer, and thermoelectric effect. The governing equations are shown to be derived from a generalized Hamilton’s principle, with the resulting weak formulation being mimicked at the discrete level. The resulting numerical method conserves mass and energy, satisfies Gauss’ magnetic law and magnetic helicity balance, and adheres to the Second Law of Thermodynamics, all at the fully discrete level. It is shown to perform well on magnetic Rayleigh–Bénard convection.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"542 ","pages":"Article 114336"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006187","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a structure-preserving and thermodynamically consistent numerical scheme for classical magnetohydrodynamics, incorporating viscosity, magnetic resistivity, heat transfer, and thermoelectric effect. The governing equations are shown to be derived from a generalized Hamilton’s principle, with the resulting weak formulation being mimicked at the discrete level. The resulting numerical method conserves mass and energy, satisfies Gauss’ magnetic law and magnetic helicity balance, and adheres to the Second Law of Thermodynamics, all at the fully discrete level. It is shown to perform well on magnetic Rayleigh–Bénard convection.
具有热电效应的粘阻MHD结构保持和热力学一致的有限元离散化
我们提出了一个结构保持和热力学一致的经典磁流体力学数值方案,包括粘度,磁电阻率,传热和热电效应。控制方程由广义汉密尔顿原理推导而来,得到的弱公式在离散水平上进行了模拟。所得到的数值方法在完全离散的水平上守恒了质量和能量,满足高斯磁定律和磁螺旋平衡,并符合热力学第二定律。结果表明,该方法具有良好的瑞利-布氏磁对流性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信