{"title":"Toward understanding whole enzymatic reaction cycles using multi-scale molecular simulations","authors":"Shingo Ito , Chigusa Kobayashi , Kiyoshi Yagi , Yuji Sugita","doi":"10.1016/j.sbi.2025.103153","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymes effectively catalyze chemical reactions at their active sites. The reactions involve three microscopic events at the active sites: substrate binding, multi-step chemical reactions, and product release. These events are often coupled with enzyme conformational changes, making theoretical and computational analyses more challenging. Advanced molecular simulations, involving molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM), are now utilized to investigate the functions of enzymes such as tryptophan synthase and P-type ATPases. Here, we summarize recent multiscale molecular simulations that incorporate multiple microscopic events in enzyme functions. The coupling of enzyme conformational changes and chemical reactions can predict a proper direction in enzymatic reaction cycles, which requires accurate predictions of the free energy changes between different physiological states. Using machine learning (ML) methods, all the microscopic events in enzyme catalysis could be described with the same accuracy as quantum chemistry. We also discuss recent developments in ML/MM simulations for enzyme catalysis.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"95 ","pages":"Article 103153"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X2500171X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes effectively catalyze chemical reactions at their active sites. The reactions involve three microscopic events at the active sites: substrate binding, multi-step chemical reactions, and product release. These events are often coupled with enzyme conformational changes, making theoretical and computational analyses more challenging. Advanced molecular simulations, involving molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM), are now utilized to investigate the functions of enzymes such as tryptophan synthase and P-type ATPases. Here, we summarize recent multiscale molecular simulations that incorporate multiple microscopic events in enzyme functions. The coupling of enzyme conformational changes and chemical reactions can predict a proper direction in enzymatic reaction cycles, which requires accurate predictions of the free energy changes between different physiological states. Using machine learning (ML) methods, all the microscopic events in enzyme catalysis could be described with the same accuracy as quantum chemistry. We also discuss recent developments in ML/MM simulations for enzyme catalysis.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation