Flow and wave characteristics of jet drainage film under crossflow

IF 3.3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Qiuxiang Chen, Xinying Wang, Qiang Li, Hongfei Hu, Haijun Wang
{"title":"Flow and wave characteristics of jet drainage film under crossflow","authors":"Qiuxiang Chen,&nbsp;Xinying Wang,&nbsp;Qiang Li,&nbsp;Hongfei Hu,&nbsp;Haijun Wang","doi":"10.1016/j.expthermflusci.2025.111616","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between jet drainage films and crossflow is widespread in engineering systems such as liquid rocket engines and nuclear reactor emergency cooling systems. In these processes, an understanding of the flow behavior and fluctuation characteristics of drainage films under crossflow is essential. In this study, an experimental system was constructed to investigate the behavior of jet drainage films under crossflow. The spatial evolution of film offset, average film thickness, base film thickness, wave height, and fluctuation characteristics was investigated under varying crossflow velocities using high-speed imaging and spectral confocal measurement techniques. The results show that the drainage film is shifted to the crossflow direction, and the offset increases linearly with the flow distance, which is inversely proportional to the jet Weber number and directly proportional to the crossflow Weber number. The spatial distribution characteristics of the average liquid film thickness, base film thickness, and wave height are jointly influenced by the jet Weber number and crossflow velocity. The cross-sectional averages of liquid film thickness, base film thickness, and wave height exhibit an initial decrease followed by a subsequent increase with flow distance. The standard deviation of the liquid film thickness was significantly and linearly correlated with its average value, with a slope of approximately 0.3. As the crossflow velocity increases, the liquid film fluctuations on the leeward side of the drainage film are significantly suppressed at low jet Weber numbers, while the liquid film fluctuations on the windward side are notably weakened at the high jet Weber number.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"171 ","pages":"Article 111616"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725002109","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between jet drainage films and crossflow is widespread in engineering systems such as liquid rocket engines and nuclear reactor emergency cooling systems. In these processes, an understanding of the flow behavior and fluctuation characteristics of drainage films under crossflow is essential. In this study, an experimental system was constructed to investigate the behavior of jet drainage films under crossflow. The spatial evolution of film offset, average film thickness, base film thickness, wave height, and fluctuation characteristics was investigated under varying crossflow velocities using high-speed imaging and spectral confocal measurement techniques. The results show that the drainage film is shifted to the crossflow direction, and the offset increases linearly with the flow distance, which is inversely proportional to the jet Weber number and directly proportional to the crossflow Weber number. The spatial distribution characteristics of the average liquid film thickness, base film thickness, and wave height are jointly influenced by the jet Weber number and crossflow velocity. The cross-sectional averages of liquid film thickness, base film thickness, and wave height exhibit an initial decrease followed by a subsequent increase with flow distance. The standard deviation of the liquid film thickness was significantly and linearly correlated with its average value, with a slope of approximately 0.3. As the crossflow velocity increases, the liquid film fluctuations on the leeward side of the drainage film are significantly suppressed at low jet Weber numbers, while the liquid film fluctuations on the windward side are notably weakened at the high jet Weber number.
横流作用下射流疏水膜的流动和波动特性
射流排水膜与横流之间的相互作用在液体火箭发动机和核反应堆应急冷却系统等工程系统中广泛存在。在这些过程中,了解排水膜在横流作用下的流动行为和波动特征是至关重要的。在本研究中,建立了一个实验系统来研究横流作用下射流疏水膜的行为。利用高速成像和光谱共聚焦测量技术,研究了不同横流速度下的膜偏移量、平均膜厚、基膜厚度、波高和波动特性的空间演变。结果表明:疏水膜向横流方向偏移,偏移量随流动距离的增加呈线性增加,与射流韦伯数成反比,与横流韦伯数成正比;射流韦伯数和横流速度共同影响平均液膜厚度、基膜厚度和波高的空间分布特征。液膜厚度、基膜厚度和波高的截面平均值随着流动距离的增加呈现先减小后增大的趋势。液膜厚度的标准差与其平均值呈显著线性相关,斜率约为0.3。随着横流速度的增加,低射流韦伯数时疏水膜背风侧液膜波动被显著抑制,高射流韦伯数时迎风侧液膜波动被显著减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信