Xiaoyu Liang , Yurong Wang , Wei Liu , Buwei Xiao , Qingze Liu , Yizhuo Sun , Pengcheng Lv , Huabei Peng , Jun Zhou , Lei Zhang , Feng Lin
{"title":"A novel in-situ field-assisted powder bed laser fusion using liquid metal enabling microstructure control and strength enhancement of austenitic steel","authors":"Xiaoyu Liang , Yurong Wang , Wei Liu , Buwei Xiao , Qingze Liu , Yizhuo Sun , Pengcheng Lv , Huabei Peng , Jun Zhou , Lei Zhang , Feng Lin","doi":"10.1016/j.ijmachtools.2025.104334","DOIUrl":null,"url":null,"abstract":"<div><div>The layer-by-layer powder bed additive manufacturing approach, which encapsulates the workpiece in powder during processing, imposes limitations on the integration of in-situ field assistance and enhances production costs. In this work, a novel laser powder bed fusion has been proposed in which the layer-wise accumulated powder bed is replaced by a thin powder layer floating on the liquid Sn. Such a liquid-metal-assisted laser powder bed fusion presents unique advantages: the characteristic thermal history of deposited materials due to high thermal conductivity and fluidity of liquid metals provides greater possibilities for microstructure modulation; the recyclable liquid metal also reduces the need for powder in the forming cylinder and reduces the number of times the powder is reused. Based on the normalized process diagram of liquid-metal-assisted laser powder bed fusion, forming experiments were carried out on the austenitic stainless steels, and the mechanisms underlying the regulation of fine-grain regions were investigated, along with an analysis of the microstructure of this region. Results indicated that the high cooling rate during liquid-metal-assisted laser powder bed fusion led to a finer microstructure and a heterogeneous grain structure ranging from submicron to micron scales in the austenitic stainless steels. The formed heterogeneous austenitic steel exhibits a yield strength surpassing 1.1 GPa and a tensile strength of 1.5 GPa, while retaining an average uniform elongation of 7 %. The in-situ heat treatment principles using liquid metal demonstrated in this work have significant applicability across various additive manufacturing processes and precipitation-hardening alloys.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"212 ","pages":"Article 104334"},"PeriodicalIF":18.8000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000896","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The layer-by-layer powder bed additive manufacturing approach, which encapsulates the workpiece in powder during processing, imposes limitations on the integration of in-situ field assistance and enhances production costs. In this work, a novel laser powder bed fusion has been proposed in which the layer-wise accumulated powder bed is replaced by a thin powder layer floating on the liquid Sn. Such a liquid-metal-assisted laser powder bed fusion presents unique advantages: the characteristic thermal history of deposited materials due to high thermal conductivity and fluidity of liquid metals provides greater possibilities for microstructure modulation; the recyclable liquid metal also reduces the need for powder in the forming cylinder and reduces the number of times the powder is reused. Based on the normalized process diagram of liquid-metal-assisted laser powder bed fusion, forming experiments were carried out on the austenitic stainless steels, and the mechanisms underlying the regulation of fine-grain regions were investigated, along with an analysis of the microstructure of this region. Results indicated that the high cooling rate during liquid-metal-assisted laser powder bed fusion led to a finer microstructure and a heterogeneous grain structure ranging from submicron to micron scales in the austenitic stainless steels. The formed heterogeneous austenitic steel exhibits a yield strength surpassing 1.1 GPa and a tensile strength of 1.5 GPa, while retaining an average uniform elongation of 7 %. The in-situ heat treatment principles using liquid metal demonstrated in this work have significant applicability across various additive manufacturing processes and precipitation-hardening alloys.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).