Malik Scheifinger , Kurt Busch , Marlis Hochbruck , Caroline Lasser
{"title":"Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation","authors":"Malik Scheifinger , Kurt Busch , Marlis Hochbruck , Caroline Lasser","doi":"10.1016/j.jcp.2025.114349","DOIUrl":null,"url":null,"abstract":"<div><div>In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114349"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500631X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.