Bilevel scheduling in downstream oil supply chain: Integrating reinforcement learning with mathematical programming

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Qipeng Yang , Wentian Fan , Nan Ma , Shu Lin , Jiawen Chang , Zhiqiang Zou , Liang Sun , Haifeng Zhang
{"title":"Bilevel scheduling in downstream oil supply chain: Integrating reinforcement learning with mathematical programming","authors":"Qipeng Yang ,&nbsp;Wentian Fan ,&nbsp;Nan Ma ,&nbsp;Shu Lin ,&nbsp;Jiawen Chang ,&nbsp;Zhiqiang Zou ,&nbsp;Liang Sun ,&nbsp;Haifeng Zhang","doi":"10.1016/j.compchemeng.2025.109381","DOIUrl":null,"url":null,"abstract":"<div><div>With the growth of global energy demand, optimizing the oil supply chain has become crucial. This paper proposes a hybrid reinforcement learning (RL) and mathematical programming (MP) scheduling approach to optimize downstream oil supply chain operations, including refinery production scheduling, logistics distribution, and inventory management. This approach decomposes the complex problem into multiple sub-problems using a Rolling-Horizon method (RH), enhancing computational efficiency and flexibility. We conduct a comparative analysis to evaluate two RL training algorithms with RH: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) denoted as SAC-RH and PPO-RH respectively. Experimental results from the simulation-based evaluation demonstrate that the SAC version excels in handling complex dynamic environments and continuous action space problems, significantly reducing the number of early warnings and improving overall optimization results. This study demonstrates the applicability of RL in industrial automation and identifies potential avenues for future research.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109381"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003849","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the growth of global energy demand, optimizing the oil supply chain has become crucial. This paper proposes a hybrid reinforcement learning (RL) and mathematical programming (MP) scheduling approach to optimize downstream oil supply chain operations, including refinery production scheduling, logistics distribution, and inventory management. This approach decomposes the complex problem into multiple sub-problems using a Rolling-Horizon method (RH), enhancing computational efficiency and flexibility. We conduct a comparative analysis to evaluate two RL training algorithms with RH: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) denoted as SAC-RH and PPO-RH respectively. Experimental results from the simulation-based evaluation demonstrate that the SAC version excels in handling complex dynamic environments and continuous action space problems, significantly reducing the number of early warnings and improving overall optimization results. This study demonstrates the applicability of RL in industrial automation and identifies potential avenues for future research.
下游石油供应链的双层调度:强化学习与数学规划的集成
随着全球能源需求的增长,优化石油供应链变得至关重要。本文提出了一种混合强化学习(RL)和数学规划(MP)调度方法来优化下游石油供应链运营,包括炼油厂生产调度、物流配送和库存管理。该方法利用滚动地平线法(Rolling-Horizon method, RH)将复杂问题分解为多个子问题,提高了计算效率和灵活性。我们对两种基于RH的RL训练算法进行了比较分析:近端策略优化(PPO)和软行为者批评家(SAC),分别表示为SAC-RH和PPO-RH。仿真评估的实验结果表明,SAC版本在处理复杂动态环境和连续动作空间问题方面表现出色,显著减少了预警次数,提高了整体优化效果。本研究证明了强化学习在工业自动化中的适用性,并确定了未来研究的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信