Stability for linear second order vector integro-differential equations

IF 1.3 Q2 MATHEMATICS, APPLIED
Leonid Berezansky , Alexander Domoshnitsky
{"title":"Stability for linear second order vector integro-differential equations","authors":"Leonid Berezansky ,&nbsp;Alexander Domoshnitsky","doi":"10.1016/j.rinam.2025.100634","DOIUrl":null,"url":null,"abstract":"<div><div>Explicit sufficient conditions for uniform exponential stability of two-dimensional linear vector integro-differential equations have been established. These criteria are novel and remain valid even in the special case of second-order linear ordinary vector differential equations. The proofs leverage the Bohl–Perron theorem, incorporate a priori estimates of solutions. An illustrative example is provided to demonstrate the applicability of the results.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100634"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Explicit sufficient conditions for uniform exponential stability of two-dimensional linear vector integro-differential equations have been established. These criteria are novel and remain valid even in the special case of second-order linear ordinary vector differential equations. The proofs leverage the Bohl–Perron theorem, incorporate a priori estimates of solutions. An illustrative example is provided to demonstrate the applicability of the results.
线性二阶矢量积分微分方程的稳定性
建立了二维线性向量积分-微分方程一致指数稳定性的显式充分条件。这些准则是新颖的,即使在二阶线性常向量微分方程的特殊情况下也是有效的。这些证明利用了波尔-佩龙定理,结合了对解的先验估计。最后通过实例说明了所得结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信