A robust and adaptive driver identification framework for intelligent transportation systems

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-09-01 DOI:10.1016/j.array.2025.100506
Wenze Shi , Ao Guo , Xufei Chu , Siyu Yang , Zilin Huang , Lin Lu
{"title":"A robust and adaptive driver identification framework for intelligent transportation systems","authors":"Wenze Shi ,&nbsp;Ao Guo ,&nbsp;Xufei Chu ,&nbsp;Siyu Yang ,&nbsp;Zilin Huang ,&nbsp;Lin Lu","doi":"10.1016/j.array.2025.100506","DOIUrl":null,"url":null,"abstract":"<div><div>Driver identification via behavioral characterization is a popular topic of intelligent transportation systems, yet existing methods often struggle with varying trip segmentation and vehicle type situations. This study proposes a refined deep learning framework to improve model robustness and adaptability under limited driving behavioral signal conditions. Our approach partitions driving trips into fixed-length identification windows, each with overlapping dynamic segments to allow the capture of temporal dependencies of driving patterns. Then, a deep neural network structure that combines a residual sequential autoencoder with an attention mechanism is incorporated to enhance the model identification performance through adaptive regularization. The framework is validated on two real-world datasets comprising 5 truck drivers and 5 sedan drivers through conventional train-validation-test. Our models achieve up to 91% accuracy for sedan drivers and 75% for truck drivers, significantly outperforming the baseline models. Notably, our approach maintains consistent performance across varying segment lengths, with an accuracy difference of only about 4% when the window length changes from 60 to 180 s. Experimental results demonstrate that our framework achieves strong segmentation-variability robustness and cross-vehicle adaptability.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100506"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000562500133X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Driver identification via behavioral characterization is a popular topic of intelligent transportation systems, yet existing methods often struggle with varying trip segmentation and vehicle type situations. This study proposes a refined deep learning framework to improve model robustness and adaptability under limited driving behavioral signal conditions. Our approach partitions driving trips into fixed-length identification windows, each with overlapping dynamic segments to allow the capture of temporal dependencies of driving patterns. Then, a deep neural network structure that combines a residual sequential autoencoder with an attention mechanism is incorporated to enhance the model identification performance through adaptive regularization. The framework is validated on two real-world datasets comprising 5 truck drivers and 5 sedan drivers through conventional train-validation-test. Our models achieve up to 91% accuracy for sedan drivers and 75% for truck drivers, significantly outperforming the baseline models. Notably, our approach maintains consistent performance across varying segment lengths, with an accuracy difference of only about 4% when the window length changes from 60 to 180 s. Experimental results demonstrate that our framework achieves strong segmentation-variability robustness and cross-vehicle adaptability.
面向智能交通系统的鲁棒自适应驾驶员识别框架
通过行为特征识别驾驶员是智能交通系统的一个热门话题,但现有的方法往往难以适应不同的行程划分和车辆类型情况。本研究提出了一种改进的深度学习框架,以提高模型在有限驾驶行为信号条件下的鲁棒性和适应性。我们的方法将驾驶行程划分为固定长度的识别窗口,每个窗口都有重叠的动态段,以允许捕获驾驶模式的时间依赖性。然后,结合残差序列自编码器和注意机制的深度神经网络结构,通过自适应正则化提高模型识别性能。通过传统的列车验证测试,在包括5名卡车司机和5名轿车司机的两个真实数据集上对该框架进行了验证。我们的模型对轿车司机和卡车司机的准确率分别达到91%和75%,显著优于基准模型。值得注意的是,我们的方法在不同的段长度范围内保持一致的性能,当窗口长度从60秒到180秒变化时,准确率仅相差约4%。实验结果表明,该框架具有较强的分割可变性鲁棒性和跨车辆适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信